摘要:液晶 (LC) 微液滴阵列是一种精巧的系统,由于其对表面性质变化的敏感性和强光学活性,具有广泛的应用,例如化学和生物传感。在这项工作中,我们利用自组装单层 (SAM) 对表面进行化学微图案化,并优先选择液晶占据的区域。利用不连续脱湿,将一滴液体拖到图案化表面上,展示了一种新颖、高产的方法,可将液晶限制在化学定义的区域中。通过改变液滴的大小和液晶相,证明了该方法的广泛适用性。虽然液滴的光学纹理由拓扑约束决定,但额外的 SAM 界面显示出锁定非均匀排列。表面效应高度依赖于尺寸,其中较大的液滴在向列相液滴中表现出不对称的指向矢结构,而在胆甾相液滴中表现出高度打结的结构。
•以人为本。•要积极主动。•提供价值。•具有对身心健康的尊敬。•提供离家附近的联合护理。•提供安全有效的护理。•提供优质的护理和服务。
人们对活性物质的集体行为产生浓厚兴趣的驱动力是理解天然材料物理的目的。一类研究较为深入的活性物质,包括上皮细胞、细长细菌和活细胞内的丝状颗粒,可以通过棒状颗粒的相互作用来描述。这将这些系统与向列液晶联系起来,这些颗粒之间具有长程取向顺序。调整这些理论并通过活性成分对其进行扩展,产生了“活性向列相”的概念,详情见[7]。活性作用使系统失去平衡,导致拓扑缺陷的自发产生/湮灭、长程向列相序的破坏和活性湍流的形成。如果将此类系统限制在曲面上,拓扑约束将强烈影响新出现的时空模式。利用这些拓扑结构,可以实现对向列相液晶的精确控制。
极端天气事件包括热浪,降雨过多和热带气旋。本报告的重点是热带气旋和相关的风暴潮,高潮和海平面上升,可能会影响亚洲七个主要城市。热带气旋对人类人群带来了主要风险,因此评估未来几十年发生此类事件的可能性的研究很重要(Seneviratne等,2012)。但是,要注意的一个重要因素是,对极端气候事件进行预测以及这些事件影响特定区域的程度极为困难,因为天气系统很复杂,并且基于建模预测的科学数据并不总是准确或完整的。此外,仅在几十年的数据上进行预测,因此科学家难以确定观察到的变化是否是由人为活性,自然变异性或两者组合引起的。
蓝相(BPS)是手性液晶,具有拓扑缺陷的常规晶格。通过分子自组装,BPS独特的软性对称性提供了许多与常规液晶不同的优秀特性。,已经开发出化学图案的表面,以将BP的自组装引导为具有所需晶格方向的完美单晶,从而进一步受益于光子学和智能电子光学设备的设计。然而,BP的相关长度(定义为保持相同BP时间端方向的距离,这是一个必不可少的设计参数)迄今仍未透露。在这里,纳米级化学模式设计的替代平面和同型锚固条纹的设计允许系统地研究沿不同动力学途径的图案化区域以外的BP的生长,以及相关长度的时间演化。对相关长度的新理解可用于指导BPS宏观的单晶的合理设计,该设计依赖于减少的图案表面,这为基于BPLC的新功能和开发提供了令人兴奋的材料,以将基于BPLC的功能和开发用于高级光学设备或软材料设计或软材料设计。
分子自旋电子学的目标是利用单个或少数分子作为自旋电子学应用的功能构建块,直接依赖于分子特性或分子与无机电极之间界面的特性。由于设备不断向小型化发展,现有硅基电子产品的摩尔定律即将终结,这些目标显得尤为重要。尽管人们对分子作为自旋传输介质的兴趣最初源于其固有的弱自旋弛豫机制导致的长自旋寿命,[5] 但人们很快意识到分子可能提供传统自旋电子学所不具备的额外选择。这是因为与无机自旋电子学中使用的材料不同,分子的结构、化学和电子特性可以以几乎无限多种方式以原子精度进行调整。当分子与无机电极接触时(这是实现单个或少数分子设备的先决条件),它们的界面相互作用可以产生标准无机界面无法实现的功能。 [3,4]
该计划(研究)提出了一个框架,用于在洪堡湾高度脆弱的尤里卡泥浆水文区域内开发海平面上升适应策略。该研究的目的是与公共机构,土地所有者,科学家和利益相关者合作,以更好地了解研究区域内运输基础设施和其他关键资源的特定洪水风险,并在近期计划范围内(现在至世纪中期)确定可行的适应措施。该研究的主要重点是开发一种基于方案的计划方法,以了解在当前条件下以及未来海平面上升的潮汐和河流洪水危害所带来的可能影响和后果的范围。这种方法包括详细的液压分析以及对沿海景观对各种洪水事件的预期反应的评估。该计划旨在帮助促进对洪水风险的集体理解,并提高实施有效的海平面上升适应项目的准备。该计划是持续计划和适应工作的技术资源,但不是决策文件,也不代表实施计划中讨论的项目概念的承诺。