近年来,变形金刚[9]在各种计算机视觉任务[10],[11],[12],[13]中表现出了不前期的成功。变压器的能力长期以来一直归因于其注意力模块。因此,已经提出了许多基于注意力的令牌混合器[4],[5],[14],[15],[16],目的是为了增强视觉传输(VIT)[11]。尽管如此,一些工作[17],[18],[19],[20],[21]发现,通过用空间MLP [17],[22],[23]或傅立叶变换[18]等简单操作员更换变压器中的注意模块,结果模型仍然会产生令人鼓舞的性能。沿着这条线,[24]将变压器摘要为一种称为元构造器的通用体系结构,并假设是元构造者在实现竞争性能中起着至关重要的作用。To verify this hypothesis, [24] adopts embarrassingly simple operator, pooling, to be the token mixer, and discovers that PoolFormer effectively outperforms the delicate ResNet/ViT/MLP-like baselines [1], [2], [4], [11], [17], [22], [25], [26], which con- firms the significance of MetaFormer.
在当今使用的光敏设备中引入,光电倍增管(或PMT)是一种多功能设备,可提供超快速响应和极高的灵敏度。典型的光电倍增管构成的光电阴极(光电极),然后是fo-Cused电极,电子乘数和真空管中的电子集合(阳极),如图1。当光进入光电极时,光电极将光电子发射到真空中。然后,这些光电子由聚焦电极电压指向电子乘数,其中电子乘以次级射击过程。然后由阳极作为输出信号收集乘以的电子。与当前用于检测紫外线,可见的和近红色区域的其他光敏设备相比,由于次级发射乘积,光电倍增管具有极高的灵敏度和极低的噪声。光电倍增管还具有快速的回答和大型光敏区域的选择。本节描述了光电倍增管结构和基本操作特征的主要特征。
Aikiro专为6-11岁的Aikiro设计,可帮助孩子使用各种框架模块和程序代码使用编码笔和卡片来定制机器人。使用这种简单的构建和编码课程,孩子们将通过易于理解的说明和插图来学习机器人工程的基础知识。
uaro使用独特的建筑系统来帮助孩子们轻松地将自己的想象力转变为现实生活。专为4-8岁儿童而设计的儿童可以轻松地学习如何使用简单的编码系统来构建和编码机器人,以帮助发展儿童的计算思维。
^应优先考虑至少18岁以下的怀孕青少年的疫苗;但也可以在3-18岁的儿童中使用。根据《健康与安全法》第124172条,三岁以下的孕妇或儿童可能只接受含量水平或不含汞的疫苗剂量。
近 年 来 , 预 训 练 语 言 模 型 已 逐 渐 成 为 自 然 语 言 处 理 领 域 的 基 座 模 型 。 相 关 实 验 现 象 表 明 , 预 训 练 语 言 模 型 能 够 自 发 地 从 预 训 练 语 料 中 学 到 一 定 的 语 言 学 知 识 、 世 界 知 识 和 常 识 知 识 , 从 而 在 知 识 密 集 型 任 务 上 获 得 出 色 的 表 现 ( AlKhamissi et al., 2022 ; Safavi and Koutra, 2021 ; Petroni et al., 2019 ) 。 然 而 , 预 训 练 语 言 模 型 中 的 知 识 隐 式 地 存 储 在 参 数 之中 , 难 以 显 式 地 对 预 训 练 语 言 模 型 中 的 知 识 进 行 分 析 和 利 用 。 同 时 , 预 训 练 语 言 模 型在 知 识 和 推 理 上 的 表 现 并 不 可 靠 , 常常 会 出 现 “ 幻 觉 ” 现 象 ( Ji et al., 2022 ) , 给 出 与 知 识 冲 突 的 预 测 结 果 。 这 些 因 素 阻 碍 了 预 训 练 语 言 模 型 提 供 可 靠 的 知 识 服 务 。 因 此 , 探 究 模 型 掌握 知 识 的 机 理 、 研 究 如 何 提 取 和 补 充 语 言 模 型 中 的 知 识 成 为 近 期 的 研 究 热点 。 本 次 讲 习 班 主 要 内 容 包 括 预 训 练 语 言 模 型 中 的 知 识 分 析 、 预 训 练 语 言 模 型 的 知 识 萃 取 、 知 识 增 强 的 预 训 练 语 言 模 型 三个 部 分 , 听 众 将 在 本 次 讲 习 班 中了 解 到 近 期 研 究 中 对 预 训 练 语 言 模 型 掌握 知 识 情 况 的 认识 、 从 预 训 练 语 言 模 型 中 提 取 符 号 知 识 的 实 现 方 案 、 利 用 外 部 知 识 增 强 模 型 弥 补 缺 陷 的 各 类 方 法 。
应对农业领域的紧迫挑战需要迅速推进育种计划,特别是对于葡萄等多年生作物。我们超越了传统的双亲数量性状基因座 (QTL) 定位,进行了一项全基因组关联研究 (GWAS),涵盖了智利育种计划中的 588 个葡萄品种,跨越三个季节并测试了 13 个关键的产量相关性状。一个强有力的候选基因 Vitvi11g000454 位于第 11 号染色体上,与植物通过茉莉酸信号对生物和非生物胁迫的反应有关,与浆果宽度有关,并有可能在葡萄育种中提高浆果大小。我们还在 2、4、9、11、15、18 和 19 号染色体上定位了与采后性状相关的新型 QTL,拓宽了我们对决定果实采后行为(包括腐烂、皱缩和重量减轻)的遗传复杂性的了解。利用基因本体注释,我们在性状和仔细研究的候选基因之间进行了比较,为未来植物育种中的性状特征识别工作奠定了坚实的基础。我们还强调了在 GWAS 分析中仔细考虑响应变量选择的重要性,因为在我们的研究中使用最佳线性无偏估计量 (BLUEs) 校正可能导致葡萄性状中一些常见 QTL 被抑制。我们的研究结果强调了开拓长期保存性状的非破坏性评估技术的必要性,为葡萄育种者和栽培者提供了改善采后鲜食葡萄质量和减少浪费的见解。