需要。临床医生需要敏捷、可靠的临床决策支持工具的支持,作为第二双眼睛来支持对所有住院患者的监测。”
这些担忧促使像我们这样的人工智能研究人员与和平研究领域的学者建立了新的研究合作关系,和平研究是一个跨学科领域,致力于分析冲突与和平的原因。这两个领域的交叉是有意义的。例如,一个旨在标记在线发布的所有伪造图像、视频或音频片段的系统必须扫描发布的每一点内容——考虑到每分钟产生的 TB 级数据,这绝非易事。相反,我们正在开发系统,其具体目标是帮助防止在特定地点和特定时间因恶意虚假信息而导致的暴力事件——这些地方很可能爆发暴力事件。通过借鉴和平研究的经验教训,人工智能开发人员可以将预警系统定位到最有可能出现虚假信息导致选举操纵或暴力事件的地方。
德国军事地球物理局。鸟类迁徙观察、预警和预报系统:自动鸟类迁徙信息系统的新发展 气象学硕士 Wilhelm Ruhe,理学硕士 德国军事地球物理局生物学 - 科室 (GU 4) D - 56841 Traben - Trarbach,德国 电话:06541/18734 传真:06541/18767 电子邮件:WilhelmRuhe@awg.dwd.d400.de 摘要 德国军事地球物理局 (GMGO) 在所有鸟击预防领域拥有 30 多年的经验。军事训练和飞行作业通常在低空进行,那里也有很多鸟类,尤其是在海岸附近和迁徙期间。大约三分之一的 GAF 鸟击发生在低空飞行作业期间。军事低空飞行中防止鸟击的最有效工具是经过充分验证的系统,该系统包括 • 持续的实际鸟类迁徙观察(视觉和雷达), • 即时报告, • 集中风险评估, • 在线警告(BIRDTAM), • 立即向空军人员和飞行员分发 BIRDTAM, • 严格的军事飞行规定和 • 定期的鸟击风险预报以供规划之用。本文概述了德国及其邻近地区自动鸟类迁徙信息系统(AVIS(拉丁语:Bird):“Automatisiertes Vogelzug Informations -System”)的近期和近期发展。描述了该系统的重要模块。概述了项目的实际情况。鸟类迁徙观察实际的鸟类迁徙观察系统基于以下网络和技术:(i)综合气象观测网络,由大约 150 个站组成。观察员经过培训并被指派目视监测鸟类迁徙。只有较大的鸟类和鸟群规模才需要报告。 (ii) 6 个防空雷达站与防空控制和报告中心 (CRC) 一起分布在德国西部。目前的作战观察系统监控 60 海里圆形范围内的所有移动目标。个人电脑和摄像机自动记录每小时的观察结果,作为 PPI 显示器的 10 分钟延时录像(图 1)。视频图像显示鸟群的二维运动。二维杂波图像会自动处理和存储。如果超过某些参数值,系统会向雷达工作人员发出警报,并指派雷达工作人员进行解释和报告(如有必要)。此外,每台 PC 都由 GMGO(生物部门或地球物理预报中心)通过调制解调器完全远程控制。可以随时启动连接并查看实际、最近或存档的观察文件。 (三)德国东北部的一个由 5 个雷达站和远程传感器组成的系统正在使用鸟类雷达数据接口的原型,该接口连续收集预先选定的 3-D 雷达图数据(仅限初级雷达图,我们提取了与二次雷达图不相关的数据(这些图与二次雷达图不相关),并将其存储到 20 分钟的数据文件中。
德国军事地球物理局。鸟类迁徙观察、预警和预报系统:自动鸟类迁徙信息系统的新发展 Dipl. Met. Wilhelm Ruhe,理学硕士 德国军事地球物理局生物学 - 科室 (GU 4) D - 56841 Traben - Trarbach,德国 电话:06541/18734 传真:06541/18767 电子邮件:WilhelmRuhe@awg.dwd.d400.de 摘要 德国军事地球物理局 (GMGO) 在所有鸟击预防领域拥有 30 多年的经验。军事训练和飞行作业通常在低空进行,那里也有很多鸟类,特别是在海岸附近和迁徙期间。大约三分之一的 GAF 鸟击发生在低空飞行作业期间。军事低空飞行中预防鸟击的最有效工具是经过充分验证的系统: • 持续实际鸟类迁徙观察(目视和雷达); • 即时报告; • 集中风险评估; • 在线警告(BIRDTAM); • 立即向空军人员和飞行员分发 BIRDTAM; • 严格管制军事飞行; • 定期进行鸟击风险预测,以用于规划目的。本文概述了德国及其邻近地区自动鸟类迁徙信息系统(AVIS(拉丁语:Bird): “Automatisiertes Vogelzug Informations -System”)的近期和近期发展情况。本文介绍了该系统的重要模块。项目的实际状态如下
北美鸟击预警系统战略计划开发工作由信息技术应用研究所 (IITA) 牵头。IITA 位于科罗拉多州科罗拉多斯普林斯的美国空军学院,是一家由空军科学研究办公室支持的独立研究中心。该研究所为国防部、空军和美国空军学院开展研究。IITA 支持采购、教育和运营 IT 需求,开发信息丰富的环境以培养毕业生进入高科技空军,并将多学科专业知识应用于 IT 研究。IITA 帮助开发研究主题、选择研究人员、管理赞助研究、公布结果并主办会议和研讨会,以促进向广泛的私人和政府组织传播信息。凭借其多学科方法,IITA 成为北美鸟击预警战略计划的合乎逻辑的赞助商。
• ALR-400 RWR 是飞行员自我保护平台的最佳盟友 • ALR-400 旨在通过几个标准机械外壳轻松安装在各种平台(包括战斗机、运输机和直升机)上。 • ALR-400 的冷却系统使其成为即使在爆炸性环境中运行的理想选择 • 模块化设计,灵活的硬件架构 • 高空间精度和分辨率 • 广泛的空间覆盖范围 • 多 CW 场景能力 • LPI 雷达检测能力 • 提高灵敏度 • 提高动态范围 • 灵活集成 • 逻辑 ICD 适应平台
3.1 简介 13 3.2 洪水预报模型及其选择 14 3.2.1 降水驱动的集水区模型 15 3.2.2 路径模型 15 3.2.3 集水区和路径组合模型 16 3.2.4 特殊情况模型 16 3.2.5 模型可用性 16 3.3 选择适当的洪水预报模型 17 3.3.1 选择适当的模型 17 3.3.2 了解洪水水文学 18 3.3.3 分析性洪水研究的要求 19 3.3.4 模型校准和数据要求 20 3.3.5 模型验证/确认 21 3.3.6 数据同化 22 3.3.7 将气象预报与水文模型耦合 22 3.4 业务水文气象网络 23 3.4.1 现有监测网络类型 23 3.5 水文气象观测网络设计要求 24 3.5.1 风险区域识别 24
3.1 简介 13 3.2 洪水预报模型及其选择 14 3.2.1 降水驱动的集水区模型 15 3.2.2 路径模型 15 3.2.3 集水区和路径组合模型 16 3.2.4 特殊情况模型 16 3.2.5 模型可用性 16 3.3 选择适当的洪水预报模型 17 3.3.1 选择适当的模型 17 3.3.2 了解洪水水文学 18 3.3.3 分析性洪水研究的要求 19 3.3.4 模型校准和数据要求 20 3.3.5 模型验证/确认 21 3.3.6 数据同化 22 3.3.7 将气象预报与水文模型耦合 22 3.4 业务水文气象网络 23 3.4.1 现有监测网络类型 23 3.5 水文气象观测网络设计要求 24 3.5.1 风险区域识别 24
3.1 简介 13 3.2 洪水预报模型及其选择 14 3.2.1 降水驱动的集水区模型 15 3.2.2 路径模型 15 3.2.3 集水区和路径组合模型 16 3.2.4 特殊情况模型 16 3.2.5 模型可用性 16 3.3 选择适当的洪水预报模型 17 3.3.1 选择适当的模型 17 3.3.2 了解洪水水文学 18 3.3.3 分析性洪水研究的要求 19 3.3.4 模型校准和数据要求 20 3.3.5 模型验证/确认 21 3.3.6 数据同化 22 3.3.7 将气象预报与水文模型耦合 22 3.4 业务水文气象网络 23 3.4.1 现有监测网络类型 23 3.5 水文气象观测网络设计要求 24 3.5.1 风险区域识别 24
3.1 简介 13 3.2 洪水预报模型及其选择 14 3.2.1 降水驱动的集水区模型 15 3.2.2 路径模型 15 3.2.3 集水区和路径组合模型 16 3.2.4 特殊情况模型 16 3.2.5 模型可用性 16 3.3 选择适当的洪水预报模型 17 3.3.1 选择适当的模型 17 3.3.2 了解洪水水文学 18 3.3.3 分析性洪水研究的要求 19 3.3.4 模型校准和数据要求 20 3.3.5 模型验证/确认 21 3.3.6 数据同化 22 3.3.7 将气象预报与水文模型耦合 22 3.4 业务水文气象网络 23 3.4.1 现有监测网络类型 23 3.5 水文气象观测网络设计要求 24 3.5.1 风险区域识别 24