人工智能和机器学习 (AI/ML) 算法在医疗保健领域的发展日渐成熟,用于诊断和治疗各种医疗状况 ( 1 )。然而,尽管此类系统技术实力雄厚,但它们的采用却一直充满挑战,它们是否能真正改善医疗保健以及在多大程度上改善医疗保健仍有待观察。一个主要原因是,基于 AI/ML 的医疗设备的有效性在很大程度上取决于其用户的行为特征,例如,用户往往容易受到有据可查的偏见或算法厌恶的影响 ( 2 )。许多利益相关者越来越多地将预测算法所谓的黑箱性质视为用户持怀疑态度、缺乏信任和接受缓慢的核心原因 ( 3, 4 )。因此,立法者一直在朝着要求提供黑箱算法决策解释的方向发展 (5) 。事实上,学术界、政府和民间社会团体几乎一致支持可解释的 AI/ML。许多人被这种方法吸引,因为它既能利用不可解释的人工智能/机器学习(如深度学习或神经网络)的准确性优势,又能支持透明度、信任和采用。我们认为,这种共识至少在应用于医疗保健领域时,既夸大了要求黑盒算法可解释的好处,又低估了其弊端。
人工智能 (AI) 及其子领域机器学习 (ML) 的进步几乎体现在生活的每个领域,包括前沿的健康研究。 1,2 然而,研究论文中描述的健康 AI/ML 系统中只有很小一部分进入临床实践。为了解决这个问题,儿童医院 (SickKids) 和 Vector 人工智能研究所 (Vector) 于 2019 年 10 月 30 日组织了 Vector-SickKids 健康 AI 部署研讨会,166 名临床医生、计算机科学家、政策制定者和医疗保健管理人员参加了会议。目的是展示 AI 从研究实验室走向临床的真实案例。演讲者来自加拿大和美国的各种机构,包括圣迈克尔医院、大学健康网络、滑铁卢大学、安大略公共卫生学院、安大略理工大学、密歇根大学、北加州凯撒医疗机构、约翰霍普金斯大学、宾夕法尼亚大学和杜克大学。每个项目所经历的成功和挑战为新兴的健康 AI 领域提供了宝贵的见解。要求每位发言者准备一个结构化的演讲,涉及以下主题:
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
医疗保健系统在确保人们的健康方面发挥着至关重要的作用。建立准确的诊断是这一过程的重要组成部分。由于消息来源强调误诊和漏诊是一个常见问题,因此必须寻求解决方案。诊断错误在急诊室很常见,急诊室被认为是一个压力很大的工作环境。当今的行业被迫应对快速变化的技术进步,这些进步导致系统、产品和服务的重塑。人工智能 (AI) 就是这样一种技术,它可以作为诊断问题的解决方案,但伴随着技术、道德和法律挑战。因此,本论文旨在研究人工智能如何影响诊断的准确性,以及它在医疗保健中的整合与技术、道德和法律方面的关系。本论文从文献综述开始,文献综述作为理论基础,并允许形成概念框架。概念框架用于选择受访者,结果对教授、研究人员、医生和政治家进行了 12 次采访。此外,还进行了一项调查,以获取公众对此事的看法。研究结果表明,人工智能已经足够成熟,能够做出比医生更准确的诊断,并以行政任务的形式减轻医务人员的负担。一个障碍是可用的数据不完整,因为法律阻碍了患者数据的共享。此外,人工智能算法必须适合所有社会少数群体,并且不能表现出种族歧视。欧洲人工智能联盟于 2018 年成立,旨在控制该技术。可以在国家和地区层面制定类似的举措,以保持对其正确使用的某种形式的控制。
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
皮肤癌检测是临床决策支持的一个常见应用 [7]。由于皮肤癌患者数量的增加和早期检测的良好治疗效果,过去几年来,人们在该领域进行了大量研究。在此背景下,DNN 已成为开发皮肤图像分类模型的可行方法 [2、8、12、30]。社区的高度关注导致出现了各种不同方法,其性能水平也参差不齐。1 所有方法的共同点都是训练一个可用于诊断并从而用于临床决策支持的模型。因此,新方法的评估标准通常是它们是否能够使模型在各种皮肤病诊断任务中取得更好的性能结果 [21]。同时,其他 AI 研究领域也越来越多地考虑对模型预测的解释。相比之下,这些技术在皮肤图像分类中的应用几乎没有得到解决,尽管最近的一些研究已经认识到
与TEMPUS XF或XF+(105或523基因,液体活检)和Tempus XT(648个基因,具有匹配的Buffy Coat匹配的固体肿瘤)NGS NGS测定法对晚期泛体肿瘤样品进行测序。在90天内收集样品。在固体组织和体细胞变体中检测到的躯体变异符合正态分布,并将落入两个标准偏差内的变异等位基因级分(VAF)作为相应液体活检中的选定生物标志物,以计算每个样品的肿瘤 - 信息CTDNA TF。
我们的分析采用了欧盟委员会提出的敏感生态系统概念,并重点关注了一系列战略行业,强调了欧盟内部值得密切关注的进口依赖性。在各种产品类别中,有一类产品特别值得关注:“计算机、电子产品和光学产品制造”。这一类产品定义了“数字”生态系统,并在“电子”和“航空航天和国防”生态系统中发挥着重要作用。它包括计算机芯片和半导体等关键组件,并且对非欧盟国家的进口依赖程度相当高。重要的是,其中一些产品的进口高度集中在“无自由”状态的国家,从而给这些依赖性带来了相对较高的风险。此外,对于这一类别中的某些产品,用欧盟生产的产品进行替代要么是不可能的,要么会带来重大挑战。
摘要:本文通过展示正在进行的项目和该领域的最新发展,概述了人工智能在医疗保健领域的潜在和实际应用,包括将人工智能融入生物技术。通过分析因偏见和遵守数据保护制度的复杂性而引起的问题,提请关注可能的风险和法律挑战。重点仍然是欧盟。本文最后总结了与 covid-19 大流行的相关性以及人工智能为解决危机做出贡献的潜力。 关键词:人工智能;医疗保健;生物技术;个性化治疗;covid-19 摘要:1. 简介 – 1.1 什么是人工智能以及它是如何工作的?– 2. 卫生和科技部门合作的示范项目 – 2.1. InnerEye Microsoft 项目 – 2.2. DeepMind 和 Google Health – 2.3 使用应用程序追踪帕金森病 – 3. 风险和挑战 – 3.1. 算法偏见 –法律问题 – 3.2.1. 数据保护 – 3.2.2. 责任 – 3.3. 其他挑战 – 4. 监管尝试:欧盟 – 5. 结论:与 Covid-19 的相关性 1. 简介
