林德会 天信仪表集团有限公司 DOI:10.12238/jpm.v3i5.4925 [摘 要] 传感器一般由被测量的敏感元件、信号输出的特殊转换元件以及对应的电子线路几部分所构 成。智能仪表技术是一门集单片机、仪表控制技术、自动化技术、电子学等诸多学科的技术。随着信 息技术的不断发展与进步,为传感器以及智能化仪器仪表提供了较大的帮助。传感器以及智能化仪器仪 表逐渐引入自动化、电子信息、计算机、通信等不同领域中,由于计算机技术、微电子技术的飞速发展, 仪器仪表的智能化发展已拥有广阔的市场发展前景。目前,已经逐渐引起相关领域研究人员的高度重 视。本文主要围绕传感器及智能化仪器仪表发展现状以及在重点领域的应用展开全面阐述。 [关键词] 传感器;智能化仪器仪表;应用 中图分类号: TP212.6 文献标识码: A The application of sensors and intelligent instruments in key areas Dehui Lin will Tianxin Instrument Group Co., Ltd [Abstract] The sensor is generally composed of the measured sensitive element, the special conversion element of the signal output and the corresponding electronic circuit.Intelligent instrument technology is a set of single chip computer, instrument control technology, automation technology, electronics and many other disciplines.With the continuous development and progress of information technology, it has provided great help for sensors and intelligent instruments.Sensors and intelligent instruments and instruments are gradually introduced into automation, electronic information, computer, communication and other different fields, due to the rapid development of computer technology, microelectronics technology, the intelligent development of instruments and meters has a broad market development prospect.At present, it has gradually attracted great attention from researchers in related fields.This paper mainly focuses on the development status of sensors and intelligent instruments and their application in key areas. [Key words] Sensors; intelligent instrumentation; application 前言
PD-1/PD-L1信号是肿瘤微环境局部免疫抑制的关键因素。针对PD-1/PD-L1信号的免疫检查点抑制剂在临床上取得了巨大的成功。然而,有几种癌症对抗PD-1/PD-L1治疗特别具有抵抗力。最近,一系列研究报道,IFN-γ可以刺激癌细胞释放外泌体PD-L1(exoPD-L1),其具有抑制抗癌免疫反应的能力并与抗PD-1反应相关。在本综述中,我们介绍了PD-1/PD-L1信号,包括所谓的“反向信号”。此外,我们总结了癌症的免疫治疗,并更加关注针对PD-1/PD-L1信号的免疫检查点抑制剂。此外,我们回顾了exoPD-L1的作用机制和调控。我们还介绍了exoPD-L1作为生物标志物的功能。最后,我们回顾了分析和量化 exoPD-L1 的方法、针对 exoPD-L1 增强免疫治疗的治疗策略以及 exoPD-L1 在癌症之外的作用。这篇全面的综述深入探讨了 exoPD-L1 的最新进展,所有这些发现都表明 exoPD-L1 在癌症和其他领域都发挥着重要作用。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
参考文献 [1] Litjens, G., Et Al. (2017)。“医学图像分析中的深度学习调查。”医学图像分析,42,60-88。 [2] Esteva, A., Et Al. (2021)。“深度学习支持的医学计算机视觉。”自然生物医学工程,5(6),541-551。 [3] Haidegger, T. (2021)。“人工智能驱动的机器人手术:趋势、进步和挑战。”IEEE 生物医学工程评论,14,27-45。 [4] Ferguson, S., Et Al. (2019)。“用于预测神经外科术后并发症的机器学习模型。”神经外科评论,43(4),891-900。 [5] Bricault, I., Et Al. (2021)。 “人工智能驱动的机器人神经外科手术:技术和临床结果。”《神经外科杂志》,135(2),543-553。[6] Shen, D. 等人(2019 年)。“医疗保健中的人工智能:个性化和精准医疗。”《自然医学》,25(1),44-56。[7] Senders, JT 等人(2018 年)。“神经外科中的机器学习:一项全球调查。”《神经外科评论》,41(3),585-594。[8] Senders, JT 等人(2020 年)。“用于神经外科结果预测的人工智能。”《柳叶刀数字健康》,2(7),E352-E361。[9] Topol, EJ(2019 年)。“高性能医疗:人类与人工智能的融合。” Nature Medicine,25(1),44-56。[10] Rudin,C.(2019)。“停止解释高风险决策的黑箱机器学习模型,并使用可解释的
摘要背景:人工智能 (AI) 技术正在不断快速发展,并有可能使职业治疗 (OT) 和 OT 客户受益。然而,人工智能的发展也带来了风险和挑战,例如与 OT 的伦理原则有关。支持未来符合 OT 伦理原则的人工智能技术的一种方法可能是通过以人为本的人工智能 (HCAI),这是人工智能研究和开发中的一个新兴分支,与 OT 的价值观和信念有明显的重叠。目标:从 OT 的伦理价值观和信念的角度,探索人工智能技术的风险和挑战,以及 OT 和 HCAI 的综合专业知识、技能和知识如何有助于发挥其潜力并塑造其未来。结果:未来人工智能技术与 OT 和 HCAI 合作的机会包括确保关注 1) 职业表现和参与,同时考虑以客户为中心;2) 职业公正和尊重多样性,以及 3) 透明度和尊重职业表现和参与数据的隐私。结论和意义:OT 需要参与并确保通过使用 HCAI 以有意义且合乎道德的方式应用 AI 为 OT 和 OT 客户服务。
背景:人工智能 (AI) 是医疗保健领域临床决策支持 (CDS) 系统的一股变革力量。它的出现受到医疗保健数据量不断增长和多样性的推动,为患者护理、诊断、治疗和健康管理提供了巨大潜力。本研究系统地回顾了 AI 在六个领域增强 CDS 的作用,强调了其对患者结果和医疗效率的影响。方法:进行了四步系统评价,包括全面的文献检索、应用纳入和排除标准、数据提取和综合以及分析。资料来源包括 PubMed、Embase 和 Google Scholar,自 2019 年以来以英文发表论文。选定的研究侧重于 AI 在 CDS 中的应用,最终审查了 32 篇论文。结果:审查确定了六个 AI CDS 领域:数据驱动的洞察和分析、诊断和预测模型、治疗优化和个性化医疗、患者监测和远程医疗集成、工作流程和管理效率以及知识管理和决策支持。每个领域对于改善 CDS 的各个方面都至关重要,从提高诊断准确性到优化资源管理。人工智能在 EHR 分析、预测分析、个性化治疗和远程医疗方面的能力表明了其在推动医疗保健方面的关键作用。讨论:人工智能通过提高诊断精度、预测能力和管理效率显著增强了医疗保健。它促进了个性化医疗、远程监控和基于证据的决策。然而,数据隐私、道德考虑和与现有系统的集成等挑战仍然存在。这需要技术人员、医疗保健专业人员和政策制定者之间的合作。结论:人工智能正在通过在多个领域增强 CDS 来彻底改变医疗保健,有助于提高效率、效果和以患者为中心的护理。然而,它应该补充而不是取代人类的专业知识。未来的方向包括道德人工智能发展、医疗保健人员的持续专业发展以及应对挑战的合作努力。这种方法确保充分利用人工智能的潜力,从而实现技术与人类护理的协同融合。
摘要背景:在人工智能 (AI) 应用于医疗保健领域时,可解释性是最受争议的话题之一。尽管人工智能驱动的系统已被证明在某些分析任务中表现优于人类,但缺乏可解释性仍然引发批评。然而,可解释性不是一个纯粹的技术问题,相反,它引发了一系列需要彻底探索的医学、法律、伦理和社会问题。本文对可解释性在医学人工智能中的作用进行了全面评估,并对可解释性对于将人工智能驱动的工具应用于临床实践的意义进行了伦理评估。方法:以基于人工智能的临床决策支持系统为例,我们采用多学科方法从技术、法律、医学和患者的角度分析了可解释性对医学人工智能的相关性。基于这一概念分析的结果,我们随后进行了伦理评估,使用 Beauchamp 和 Childress 的“生物医学伦理原则”(自主、仁慈、不伤害和正义)作为分析框架,以确定医疗 AI 中可解释性的必要性。结果:每个领域都强调了一组不同的核心考虑因素和价值观,这些因素与理解可解释性在临床实践中的作用有关。从技术角度来看,可解释性必须从如何实现和从发展角度来看有什么好处两个方面来考虑。从法律角度来看,我们将知情同意、医疗器械认证和批准以及责任确定为可解释性的核心接触点。医学和患者的观点都强调了考虑人类行为者和医疗 AI 之间相互作用的重要性。我们得出的结论是,在临床决策支持系统中忽略可解释性会对医学的核心伦理价值观构成威胁,并可能对个人和公共健康产生不利影响。结论:为了确保医疗 AI 兑现其承诺,需要让开发人员、医疗保健专业人员和立法者意识到医疗 AI 中不透明算法的挑战和局限性,并促进多学科合作。关键词:人工智能、机器学习、可解释性、可解释性、临床决策支持
“人工智能”(AI)这一术语广泛应用于人类活动的各个领域。但目前对人工智能尚无一个普遍接受的定义。对于一些人来说,人工智能是任何数据处理技术;对于另一些人而言,它是一些能够超越人类智能的人工生命形式。 AI的定义之一是自主性和适应性,即。能够在复杂条件下无需人工不断指导地执行任务,并且能够根据自身经验提高工作效率。也就是说,人工智能应该能够在复杂的环境中执行分配给它的任务,研究它及其行为并尽量减少不利结果的可能性。今天我们可以说,人工智能包括具有一组特定算法的软件工具,这些算法能够像人类一样解决智力问题。人工智能新技术、新成果发展速度飞快,这些技术的应用问题不再是人工智能是否会产生影响,而是“谁、如何、在何地、何时感受到这种影响,是积极的还是消极的”。人工智能在医疗健康领域的发展引发了“人工智能即将取代医生”这一话题的热烈讨论。目前,智能机器完全取代临床医生的可能性不大,但各种人工智能方法正越来越多地被用于支持医疗决策[1,2,3,4]
本丛书旨在介绍关键基础设施系统和信息物理系统的风险、安全性和可靠性的最新研究、研究和最佳工程实践、实际应用和实际案例研究。本丛书将涵盖网络关键基础设施的风险、故障和漏洞的建模、分析、框架、数字孪生模拟,并提供 ICT 方法以确保保护和避免破坏经济、公用事业供应网络、电信、运输等重要领域。在公民的日常生活中。将分析关键基础设施的网络和现实性质的交织,并揭示关键基础设施系统的风险、安全性和可靠性挑战。通过整个云到物连续体技术的感知和处理提供的计算智能将成为实时检测网络关键基础设施中的风险、威胁、异常等的基础。并将促使采取人为和自动保护行动。最后,将寻求对政策制定者、管理者、地方和政府管理部门以及全球国际组织的研究和建议。