与TEMPUS XF或XF+(105或523基因,液体活检)和Tempus XT(648个基因,具有匹配的Buffy Coat匹配的固体肿瘤)NGS NGS测定法对晚期泛体肿瘤样品进行测序。在90天内收集样品。在固体组织和体细胞变体中检测到的躯体变异符合正态分布,并将落入两个标准偏差内的变异等位基因级分(VAF)作为相应液体活检中的选定生物标志物,以计算每个样品的肿瘤 - 信息CTDNA TF。
在喀拉拉邦提出的平台合作社模型,在国际劳工组织(ILO)的原则的指导下,提出了一种解决失业和促进可持续发展的变革性方法。尽管喀拉拉邦的高人类发展指数(HDI)为0.794,但青年劳动力的参与仍然很低,有42.63%的人从事就业,教育或培训。喀拉拉邦发展与创新战略委员会(K-DISC)领导下的喀拉拉邦知识经济特派团(KKEM)旨在通过利用私营部门的就业机会和增强创新的当地经济发展,将喀拉拉邦转变为知识社会。通过诸如数字劳动力管理系统(DWMS)之类的计划,KKEM还促进了远程工作和自由职业机会以及常规工作,获得了103,108多个职位,并在2024年3月之前为18,075个人提供了技能培训。以平台特定条款监管的基于任务的就业方式的开放经济面临着重大挑战,包括缺乏劳动力保护,不稳定的收入和剥削性实践。为了回应,KKEM提出的平台合作社模型将合作原则与数字平台相结合,促进民主治理,共享所有权和公平的利润分配。该模型通过有针对性的技能来增强就业能力,并通过通过道德合作和技术的卓越应用来通过多元化和汇总该州的小型生产系统来产生本地经济价值。借鉴了全球示例,例如欧盟关于透明和可预测的工作条件的指令以及英国最高法院对Uber驾驶员的裁决,KKEM的方法优先考虑法律认可,公平待遇,公平待遇和对开放人才工人的福利。通过整合基于社区的计划和本地资源,KKEM的平台合作社旨在创建一个更公平,更可持续的开放经济生态系统,从而有助于实现可持续发展目标的发展。
1 即使在ISO内部,机器人安全标准也是与汽车安全标准分开制定的。 此外,国际机器人制造商联合会(IFR)在其机器人定义或统计报告中没有包括汽车或自动驾驶汽车。
我们的分析采用了欧盟委员会提出的敏感生态系统概念,并重点关注了一系列战略行业,强调了欧盟内部值得密切关注的进口依赖性。在各种产品类别中,有一类产品特别值得关注:“计算机、电子产品和光学产品制造”。这一类产品定义了“数字”生态系统,并在“电子”和“航空航天和国防”生态系统中发挥着重要作用。它包括计算机芯片和半导体等关键组件,并且对非欧盟国家的进口依赖程度相当高。重要的是,其中一些产品的进口高度集中在“无自由”状态的国家,从而给这些依赖性带来了相对较高的风险。此外,对于这一类别中的某些产品,用欧盟生产的产品进行替代要么是不可能的,要么会带来重大挑战。
摘要背景:人工智能 (AI) 技术正在不断快速发展,并有可能使职业治疗 (OT) 和 OT 客户受益。然而,人工智能的发展也带来了风险和挑战,例如与 OT 的伦理原则有关。支持未来符合 OT 伦理原则的人工智能技术的一种方法可能是通过以人为本的人工智能 (HCAI),这是人工智能研究和开发中的一个新兴分支,与 OT 的价值观和信念有明显的重叠。目标:从 OT 的伦理价值观和信念的角度,探索人工智能技术的风险和挑战,以及 OT 和 HCAI 的综合专业知识、技能和知识如何有助于发挥其潜力并塑造其未来。结果:未来人工智能技术与 OT 和 HCAI 合作的机会包括确保关注 1) 职业表现和参与,同时考虑以客户为中心;2) 职业公正和尊重多样性,以及 3) 透明度和尊重职业表现和参与数据的隐私。结论和意义:OT 需要参与并确保通过使用 HCAI 以有意义且合乎道德的方式应用 AI 为 OT 和 OT 客户服务。
人工智能 (AI) 及其子领域机器学习 (ML) 的进步几乎体现在生活的每个领域,包括前沿的健康研究。 1,2 然而,研究论文中描述的健康 AI/ML 系统中只有很小一部分进入临床实践。为了解决这个问题,儿童医院 (SickKids) 和 Vector 人工智能研究所 (Vector) 于 2019 年 10 月 30 日组织了 Vector-SickKids 健康 AI 部署研讨会,166 名临床医生、计算机科学家、政策制定者和医疗保健管理人员参加了会议。目的是展示 AI 从研究实验室走向临床的真实案例。演讲者来自加拿大和美国的各种机构,包括圣迈克尔医院、大学健康网络、滑铁卢大学、安大略公共卫生学院、安大略理工大学、密歇根大学、北加州凯撒医疗机构、约翰霍普金斯大学、宾夕法尼亚大学和杜克大学。每个项目所经历的成功和挑战为新兴的健康 AI 领域提供了宝贵的见解。要求每位发言者准备一个结构化的演讲,涉及以下主题:
加快其在人工智能领域的全球领导地位的战略。为此,成立了世界上第一个人工智能部,并任命了一位专门的人工智能部长——奥马尔·苏丹·阿尔
• ML 的一个子集 • 通常利用人工神经网络 (ANN) 架构 • 结构化和非结构化数据(图像、文本、信号等) • 需要大量的训练数据和计算能力
人工智能和机器学习 (AI/ML) 算法在医疗保健领域的发展日渐成熟,用于诊断和治疗各种医疗状况 ( 1 )。然而,尽管此类系统技术实力雄厚,但它们的采用却一直充满挑战,它们是否能真正改善医疗保健以及在多大程度上改善医疗保健仍有待观察。一个主要原因是,基于 AI/ML 的医疗设备的有效性在很大程度上取决于其用户的行为特征,例如,用户往往容易受到有据可查的偏见或算法厌恶的影响 ( 2 )。许多利益相关者越来越多地将预测算法所谓的黑箱性质视为用户持怀疑态度、缺乏信任和接受缓慢的核心原因 ( 3, 4 )。因此,立法者一直在朝着要求提供黑箱算法决策解释的方向发展 (5) 。事实上,学术界、政府和民间社会团体几乎一致支持可解释的 AI/ML。许多人被这种方法吸引,因为它既能利用不可解释的人工智能/机器学习(如深度学习或神经网络)的准确性优势,又能支持透明度、信任和采用。我们认为,这种共识至少在应用于医疗保健领域时,既夸大了要求黑盒算法可解释的好处,又低估了其弊端。
“人工智能”(AI)这一术语广泛应用于人类活动的各个领域。但目前对人工智能尚无一个普遍接受的定义。对于一些人来说,人工智能是任何数据处理技术;对于另一些人而言,它是一些能够超越人类智能的人工生命形式。 AI的定义之一是自主性和适应性,即。能够在复杂条件下无需人工不断指导地执行任务,并且能够根据自身经验提高工作效率。也就是说,人工智能应该能够在复杂的环境中执行分配给它的任务,研究它及其行为并尽量减少不利结果的可能性。今天我们可以说,人工智能包括具有一组特定算法的软件工具,这些算法能够像人类一样解决智力问题。人工智能新技术、新成果发展速度飞快,这些技术的应用问题不再是人工智能是否会产生影响,而是“谁、如何、在何地、何时感受到这种影响,是积极的还是消极的”。人工智能在医疗健康领域的发展引发了“人工智能即将取代医生”这一话题的热烈讨论。目前,智能机器完全取代临床医生的可能性不大,但各种人工智能方法正越来越多地被用于支持医疗决策[1,2,3,4]
