胶质母细胞瘤(GBM)代表了由于其侵略性而引起的重大治疗挑战。肿瘤治疗场(TTFields)提出了一种有前途的GBM治疗方法。TTFIELD的主要机制,一种抗魔法作用,以及许多间接作用,包括增加的细胞膜渗透性,这与其他治疗方式相结合。当前的组合通常包括化学疗法,尤其是替莫唑胺(TMZ)的化学疗法,但是,新兴的数据表明,靶向疗法,放射疗法和免疫疗法的潜在协同作用。ttfields表现出最小的副作用,主要是与皮肤相关的,对疗法的合并没有明显的障碍。通过几项注册后研究证明了TTFields在GBM治疗中的有效性,主张持续研究以优化患者的总体生存(OS)和无进展生存期(PFS),而不是仅专注于生活质量。
结果:在控制所有混杂因素之后,多元逻辑回归分析表明,体育活动的各个领域与糖尿病肾脏疾病的患病率之间缺乏相关性。多个广义线性回归分析表明,PA的持续时间(B = 0.05,95%CI,0.01 - 0.09,P = 0.012)和TPA(B = 0.32,95%CI,0.10 - 0.55,0.55,P = 0.006)与EGFR水平有积极相关的; LTPA持续时间与UACR水平成反比(b = -5.97,95%CI,-10.50 -1.44,p = 0.011)。RCS曲线表明PA,OPA和EGFR之间存在非线性关系,以及PA和ACR之间的非线性相关性。亚组和灵敏度分析在很大程度上与多元广义线性回归的结果一致,从而强调了我们发现的鲁棒性。
作者:K Wihersaari · 2015 · 被引用 9 次 — 情报(因此是网络情报)主要通过军事来定义... 情报获取方法是间接的。在...
后端 VLSI 设计流程知识 - 库、平面规划、布局、布线、验证、测试。规格和原理图单元设计、Spice 模拟、电路元件、交流和直流分析、传输特性、瞬态响应、电流和电压噪声分析、设计规则、微米规则、设计的 Lambda 规则和设计规则检查、电路元件的制造方法、不同单元的布局设计、电路提取、电气规则检查、布局与原理图 (LVS)、布局后模拟和寄生提取、不同的设计问题(如天线效应、电迁移效应、体效应、电感和电容串扰和漏极穿通等)、设计格式、时序分析、反向注释和布局后模拟、DFT 指南、测试模式和内置自测试 (BIST)、ASIC 设计实施。
香港在绿色金融科技领域取得了两个显著的里程碑。2023 年 9 月,金管局发起绿色金融科技大赛,邀请香港和世界各地的绿色金融科技公司参与并提供与净零转型、气候风险管理和可持续金融相关的市场化解决方案。共有来自 19 个司法管辖区的 69 家公司参与了这项计划。2024 年 3 月,香港绿色金融科技示范区与数码港和投资推广署合作推出了香港绿色金融科技地图原型,展示了 50 多家提供绿色金融科技解决方案的本地公司,涵盖 ESG 数据和分析、气候风险评估、绿色数字金融和碳信用交易等领域。这些里程碑加强了香港对绿色金融科技的承诺,标志着该地区可持续金融技术的发展和应用的重要转折点。
本丛书旨在介绍关键基础设施系统和信息物理系统的风险、安全性和可靠性的最新研究、研究和最佳工程实践、实际应用和实际案例研究。本丛书将涵盖网络关键基础设施的风险、故障和漏洞的建模、分析、框架、数字孪生模拟,并提供 ICT 方法以确保保护和避免破坏经济、公用事业供应网络、电信、运输等重要领域。在公民的日常生活中。将分析关键基础设施的网络和现实性质的交织,并揭示关键基础设施系统的风险、安全性和可靠性挑战。通过整个云到物连续体技术的感知和处理提供的计算智能将成为实时检测网络关键基础设施中的风险、威胁、异常等的基础。并将促使采取人为和自动保护行动。最后,将寻求对政策制定者、管理者、地方和政府管理部门以及全球国际组织的研究和建议。
“人工智能”(AI)这一术语广泛应用于人类活动的各个领域。但目前对人工智能尚无一个普遍接受的定义。对于一些人来说,人工智能是任何数据处理技术;对于另一些人而言,它是一些能够超越人类智能的人工生命形式。 AI的定义之一是自主性和适应性,即。能够在复杂条件下无需人工不断指导地执行任务,并且能够根据自身经验提高工作效率。也就是说,人工智能应该能够在复杂的环境中执行分配给它的任务,研究它及其行为并尽量减少不利结果的可能性。今天我们可以说,人工智能包括具有一组特定算法的软件工具,这些算法能够像人类一样解决智力问题。人工智能新技术、新成果发展速度飞快,这些技术的应用问题不再是人工智能是否会产生影响,而是“谁、如何、在何地、何时感受到这种影响,是积极的还是消极的”。人工智能在医疗健康领域的发展引发了“人工智能即将取代医生”这一话题的热烈讨论。目前,智能机器完全取代临床医生的可能性不大,但各种人工智能方法正越来越多地被用于支持医疗决策[1,2,3,4]
最复杂的机器学习形式涉及深度学习。这是一种神经网络,但具有许多预测结果的层。它已用于肿瘤学和放射学的准确诊断。此类模型中可能存在多个隐藏特征,由于当今的技术,这些特征可以更快地被发现。深度学习通常用于识别放射学中的癌变组织。4 它可以识别放射图像和放射组学中的潜在癌变病变,以检测肉眼看不见的临床相关数据。深度学习也用于语音识别。然而,这种类型的学习很复杂,超出了普通人类观察者的解释范围。人工智能 (AI) 在商业和社会等领域越来越普遍,现在也被用于医疗保健。人工智能技术有可能改变患者护理和管理医疗保健部门的行政流程。多项研究指出,人工智能在关键的医疗保健任务中表现优于人类,例如在诊断疾病、研究、发现肿瘤等方面。尽管如此,人们相信人工智能不会很快取代人类在医疗保健领域的地位。文章
皮肤癌检测是临床决策支持的一个常见应用 [7]。由于皮肤癌患者数量的增加和早期检测的良好治疗效果,过去几年来,人们在该领域进行了大量研究。在此背景下,DNN 已成为开发皮肤图像分类模型的可行方法 [2、8、12、30]。社区的高度关注导致出现了各种不同方法,其性能水平也参差不齐。1 所有方法的共同点都是训练一个可用于诊断并从而用于临床决策支持的模型。因此,新方法的评估标准通常是它们是否能够使模型在各种皮肤病诊断任务中取得更好的性能结果 [21]。同时,其他 AI 研究领域也越来越多地考虑对模型预测的解释。相比之下,这些技术在皮肤图像分类中的应用几乎没有得到解决,尽管最近的一些研究已经认识到
