连续的嗜热堆肥(CTC)是作为在嗜热相中进行的连续堆肥的一种修饰,在该阶段,有机废物降解过程很快运行。以前的CTC研究使用灯作为热源,然后更改为使用加热器。堆肥的几个重要因素是搅拌和空气循环以增加氧气水平,以便发生有氧堆肥过程。通过制作空气孔和设置自动搅拌来修改机器。这项研究旨在确定可提供最佳结果的气孔开口和搅拌频率。该研究是在两个阶段进行的。第一阶段是寻找3个变体的空洞开口:闭合,一半打开并完全开放。继续找到3个变化的最佳搅拌频率:每天一次,每天2次,每天6次。所测量的参数包括堆肥过程中测量的温度湿度和pH值,以及对过程中新鲜废物,堆肥启动器和成熟堆肥的化学分析。该研究每天增加1公斤人造废物进行了8天。结果表明,半开口孔在嗜热相中产生了更好的堆肥质量和温度一致性。每天2次的搅拌频率在嗜热相和堆肥质量中产生一致的温度会导致SNI符合SNI的19-7030-2004堆肥规格,来自家用有机废物的堆肥规格。有机废物的存在加速了废物分解过程,引起了令人不安的气味。关键字:空洞,连续的嗜热堆肥(CTC),有机废物,搅拌,温度介绍1基于对印度尼西亚废物组成的分析,有机废物是最大的成分,达到了70%以上,厨房有机废物在20-65%的经济阶段取决于社区的经济阶层(Damanhuri,youstiani eastiani eastiani eastiani eastiani ex ever of 20-65%)。目前使用黑士兵苍蝇(BSF)进行处理,被广泛使用并证明是有效的
将非线性纳米光量设备引入光学频率梳量计量学领域为低功率和芯片集成时钟,高精度频率合成和广泛带宽光谱的新机会。但是,这些进步中的大多数仍被限制在光谱的近红外区域,该区域限制了在紫外线和可见范围内与大量量子和原子系统的频率梳集成。在这里,我们通过引入多段纳米型薄膜硅锂波导来克服这一缺点,这些尼贝特波导将工程性分散和鼠标匹配匹配的匹配结合在一起,从而通过χ(2)和χ(3)非线性的组合进行了有效的超核电生成。只有1,550 nm处的脉冲能量仅90 pj,我们实现了跨越330–2,400 nm的无间隙频率梳覆盖率。从近红外泵到350–550 nm的紫外线 - 可见区域的转化效率为17%,我们对优化的极点结构的建模预测效率更高。通过χ(2)在同一波导中通过χ(2)非线性的谐波生成直接产生载体 - 内玻璃偏移频率,以及在短达350 nm的波长下验证梳子连贯性的手段。我们的结果提供了一种集成的光子学方法,可以创建可见和紫外线频率梳子,以影响精度光谱,量子信息处理和在此重要光谱窗口中的光学时钟应用。
摘要 — 了解药物的意外作用对于评估治疗风险和药物再利用至关重要。尽管现有的大量研究预测了药物副作用的存在,但其中只有四项研究预测了副作用的频率。不幸的是,目前的预测方法 (1) 没有利用药物靶标,(2) 不能很好地预测看不见的药物,(3) 没有使用多种异构药物特征。我们提出了一种基于深度学习的新型药物副作用频率预测模型。我们的模型利用靶蛋白信息以及分子图、指纹和化学相似性等异构特征同时创建药物嵌入。此外,该模型将药物和副作用表示到一个公共向量空间中,分别学习药物和副作用的对偶表示向量。我们还使用 Adaboost 方法扩展了我们模型的预测能力,以补偿没有明确靶蛋白的药物。我们在预测副作用频率方面取得了优于现有方法的最佳性能,尤其是对于看不见的药物。消融研究表明,我们的模型有效地结合并利用了药物的异质性特征。此外,我们观察到,当给出目标信息时,具有明确目标的药物比没有明确目标的药物产生更好的预测。实现可在 https://github.com/eskendrian/sider 上找到。
摘要。这项工作研究了大脑两个半球的脑电图(EEG)节奏的主要频率的不对称性。研究了三个年龄段:16-20、21-35和35 - 60年。对主要频率的研究是在一般组中进行的,并在男性和女性中分别进行。学生,更多的教育学生和大学工作人员被招募为学科。使用八个单极铅中的神经元1脑光谱仪研究了脑电图的主要频率。根据国际“ 10-20%”系统,将电极应用于头皮。受试者的脑电图闭着眼睛记录了一个清醒状态。研究了五种EEG节奏的主要频率:Alpha,beta1,beta2,Theta和Delta Rhythms。可以发现,在一般组的不同年龄时期,单个脑电图中存在不对称性。另外,在分别研究男性和女性时,在不同年龄时期内观察到主要频率的不对称性。我们的数据表明16至60岁的人类脑半球的电活动可能存在不对称性。
摘要 脑电图 (EEG) 信号是神经科学研究和临床应用(如脑机接口和神经系统疾病诊断)的基础。这些信号通常是神经活动和噪声的组合,来自各种来源,包括眼球和肌肉运动等生理伪影。在这种情况下,我们解决了区分神经活动和噪声相关来源的挑战。我们开发了一种在频域中运行的新型 EEG 去噪模型,利用有关噪声频谱特征的先验知识自适应地计算用于噪声分离的最佳卷积滤波器。该模型经过训练可以学习一种经验关系,将噪声和噪声信号的频谱特性与允许信号去噪的非线性变换联系起来。在 EEGdenoiseNet 数据集上的性能评估表明,所提出的模型根据时间和频谱指标都实现了最佳结果。发现该模型可以从输入的 EEG 数据中去除生理伪影,从而实现有效的 EEG 去噪。事实上,该模型的性能与基准模型相当甚至更好,证明可以有效去除肌肉和眼部伪影,而无需对特定类型的伪影进行任何训练。
心血管波形的分析提供了有关健康和疾病状况的宝贵临床信息。固有频率(如果)方法是最近引入的框架 - 使用单个动脉压力波形来提取有关心血管系统的生理相关信息。IF方法的临床实用性和生理准确性已通过几项临床前和临床研究良好。但是,当前L 2优化求解器的计算复杂性对于IF计算仍然是实时设置中IF方法实际部署的瓶颈。在本文中,我们提出了一种基于机器学习(ML)的方法,用于确定单个颈动脉波形的IF参数。我们使用依次降低的前馈神经网络(FNN)模型将颈动脉波形映射到IF方法的输出参数,从而避免了非convex l 2最小化问题,该问题是由常规方法引起的。我们的方法还包括用于数据预处理,模型培训和模型评估的程序。在我们的模型开发中,我们同时使用了临床和合成波形。我们的临床数据库由来自两个不同来源的颈动脉波形组成:亨廷顿医学研究机构(HMRI)iPhone心脏研究和Framingham心脏研究(FHS)。在HMRI和FHS临床研究中,使用了各种设备平台,例如压电传动系统,光学分解(Vivio)和iPhone相机来测量动脉波形。我们的盲目临床测试表明,从基于FNN的方法计算的参数与基于标准L 2优化方法的参数之间非常强的相关性(即r 0.93和p-value 0.005,对于每个参数,则为r 0.005)。我们的结果还表明,如果本工作中引入的模型基于FNN的性能独立于测量设备和设备采样率。
摘要在这项研究中,通过实验研究了固定长度为60 cm的固定杆的静态挠度和固有频率,并具有不同长度的零件。Six rods were used, each divided into the following parts: (60 cm copper), (12cm aluminium– 48cm copper), (24cm aluminium–36cm copper), (36cm aluminium–24cm copper), (48cm aluminium–12cm copper), (60cm aluminium).杆在每一端的简单支撑中固定。静态挠度是通过移动数字拨号量表与杆划分一起测量的,同时每次固定载荷值。通过振荡器装置测量每个杆的固有频率。结果表明,铝制成分的静态偏转大于铜制成的部分,而杆的固有频率随着铝比例的增加而增加,而铝的固有频率与每个杆的铜相比。关键词:静态挠度,铜,铝,固有频率
摘要 体感皮层的微刺激可引发人工触觉感知,并可纳入双向脑机接口 (BCI) 以恢复受伤或患病后的功能。然而,人们对刺激参数本身如何影响感知知之甚少。在这里,我们通过植入两名颈脊髓损伤人类参与者体感皮层的微电极阵列进行刺激,并改变刺激幅度、频率和刺激序列持续时间。增加幅度和刺激序列持续时间会增加所有测试电极上的感知强度。令人惊讶的是,我们发现增加频率会在某些电极上引发更强烈的感知,但在其他电极上引发的感知强度较低。这些不同的频率-强度关系分为三组,它们在不同的刺激频率下也会引起不同的感知质量。相邻的电极位置更有可能属于同一组。这些结果支持了刺激频率直接控制触觉感知的想法,并且这些不同的感知可能与体感皮层的组织有关,这将有助于双向 BCI 刺激策略的原则性发展。
基于Gan Schottky屏障二极管(SBD),使用反行二极管对(APDP)的频率三副制作者以3.6 GHz的输出频率进行了建模和建模。此外,明确研究并比较了两种连接方案,即APDP系列APDP和Shunt APDP三倍器。与分流APDP三倍器相比,系列APDP三重序列的输出功率更高-0.14 dbm,最小转化率较小26.9 dB。提出了两种类型三级游戏的精确紧凑型模型,以验证三倍体的产生功率和性能的产生。在紧凑的模型中,从i - v特征和宽带小信号s参数中提取了SBD的非线性香料参数和二极管对的寄生参数。三元器的输入和输出网络被取消安装,以确保谐波模拟的准确性。APDP作为频率三倍器的出色性能和相应的模型为设计RF乘数提供了一种实用的选择。
1 MNM Bioscience Inc.,美国马萨诸塞州剑桥市02142,美国; elzbieta.kaja@gmail.com(e.k. ); 26adrian.l@gmail.com(A.L. ); dawid.sielski@mnm.bio(D.S. ); mateusz.sypniewski@mnm.bio(M.S. ); wojtaszewska@gmail.com(M.W。 ); mmaria.stepien@gmail.com(M.S. ); karolina.lisiak@mnm.bio(K.L.-T。); fip.wolbach@mnm.bio(F.W. ); daria.kolodziejska96@gmail.com(D.K. ); katarzyna.ferdyn@gmail.com(k.f. ); maciej.dabrowski@mnm.bio(M.D. ); alicja.wozna@mnm.bio(A.W。 ); paula.dobosz@gmail.com(p.d. ); kasia@mnm.bio(K.Z. ); pawel.zawadzki@mnm.bio(P.Z.) 2华沙内政和行政部中央临床医院,波兰华沙02-507; zbigniew.krol@cskmswia.pl(Z.J.K. ); artur.zaczynski@cskmswia.pl(a.z. ); agnieszka.pawlak@cskmswia.pl(A.P. ); robert.gil@cskmswia.pl(R.G. ); waldemar.wierzba@cskmswia.pl(W.W.)3医学化学与实验室医学系,波兹南医学科学大学,60-101 Poznan,波兰,波兰4 4遗传学和动物育种系,Pozna´n Life Sciences of Pozna´n Life Sciences of Life Sciences,60-637 Poznan,Poland 5波兰; tgambin@gmail.com 6医学遗传学系,母亲和儿童研究所,波兰华沙01-211; Mateusz.dawidziuk@imid.mid.pl 7 Biostatistics Group,Wrocław环境与生命科学大学,波兰弗罗茨瓦夫51-631; tomasz.suchocki@gmail.com(T.S. ); jszyda@gmail.com(J.S。) ); anna.bodora@gmail.com(A.B.-T。); welikowski@wp.pl(W.E.)1 MNM Bioscience Inc.,美国马萨诸塞州剑桥市02142,美国; elzbieta.kaja@gmail.com(e.k.); 26adrian.l@gmail.com(A.L.); dawid.sielski@mnm.bio(D.S.); mateusz.sypniewski@mnm.bio(M.S.); wojtaszewska@gmail.com(M.W。); mmaria.stepien@gmail.com(M.S.); karolina.lisiak@mnm.bio(K.L.-T。); fip.wolbach@mnm.bio(F.W.); daria.kolodziejska96@gmail.com(D.K.); katarzyna.ferdyn@gmail.com(k.f.); maciej.dabrowski@mnm.bio(M.D.); alicja.wozna@mnm.bio(A.W。); paula.dobosz@gmail.com(p.d.); kasia@mnm.bio(K.Z.); pawel.zawadzki@mnm.bio(P.Z.)2华沙内政和行政部中央临床医院,波兰华沙02-507; zbigniew.krol@cskmswia.pl(Z.J.K.); artur.zaczynski@cskmswia.pl(a.z.); agnieszka.pawlak@cskmswia.pl(A.P.); robert.gil@cskmswia.pl(R.G.); waldemar.wierzba@cskmswia.pl(W.W.)3医学化学与实验室医学系,波兹南医学科学大学,60-101 Poznan,波兰,波兰4 4遗传学和动物育种系,Pozna´n Life Sciences of Pozna´n Life Sciences of Life Sciences,60-637 Poznan,Poland 5波兰; tgambin@gmail.com 6医学遗传学系,母亲和儿童研究所,波兰华沙01-211; Mateusz.dawidziuk@imid.mid.pl 7 Biostatistics Group,Wrocław环境与生命科学大学,波兰弗罗茨瓦夫51-631; tomasz.suchocki@gmail.com(T.S.); jszyda@gmail.com(J.S。)); anna.bodora@gmail.com(A.B.-T。); welikowski@wp.pl(W.E.)8波兰国家动物生产研究所,32-083 BALICE 9遗传学与生物技术研究所,华沙大学生物学学院,波兰02-106; p.golik@uw.edu.pl 10弗雷德里克·肖邦省专业医院血液学系,波兰35-055rzeszóW,11. m.mroczek888@gmail.com 12 Department of Infectious Diseases, Medical University of Lublin, 20-059 Lublin, Poland 13 Department of Sports Medicine, Medical University of Lublin, 20-059 Lublin, Poland 14 Medical and Science Sp. z o.o., 08-455 Podebłocie, Poland 15 Institute of Human Genetics Polish Academy of Sciences, 60-479 Poznan, Poland 16 Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland 17 Department of Internal Medicine, J ó zef Stru´s Multidisciplinary Municipal Hospital, 61-285 Poznan,波兰; marcin.zytkiewicz@gmail.com(M。Z. 18波兰科学学院Mossakowski医学研究中心,波兰华沙02-106,191-091华沙大学临床中心血液学,移植和内科,波兰,波兰 *通信 *通信:Pawel.sztromwasser@mnm.mm.bio†这些授权撰稿人。8波兰国家动物生产研究所,32-083 BALICE 9遗传学与生物技术研究所,华沙大学生物学学院,波兰02-106; p.golik@uw.edu.pl 10弗雷德里克·肖邦省专业医院血液学系,波兰35-055rzeszóW,11. m.mroczek888@gmail.com 12 Department of Infectious Diseases, Medical University of Lublin, 20-059 Lublin, Poland 13 Department of Sports Medicine, Medical University of Lublin, 20-059 Lublin, Poland 14 Medical and Science Sp.z o.o., 08-455 Podebłocie, Poland 15 Institute of Human Genetics Polish Academy of Sciences, 60-479 Poznan, Poland 16 Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland 17 Department of Internal Medicine, J ó zef Stru´s Multidisciplinary Municipal Hospital, 61-285 Poznan,波兰; marcin.zytkiewicz@gmail.com(M。Z.18波兰科学学院Mossakowski医学研究中心,波兰华沙02-106,191-091华沙大学临床中心血液学,移植和内科,波兰,波兰 *通信 *通信:Pawel.sztromwasser@mnm.mm.bio†这些授权撰稿人。