参考:(a) 美国国家电信和信息管理局 (NTIA) 《联邦无线电频率管理法规和程序手册》 (b) 国际电信联盟 (ITU) 《无线电规则》 (c) 第 47 条联邦法规 (CFR),联邦通信委员会 (FCC) 规则和法规 (d) 第 47 条美国法典 (USC) § 151 条及后续条款。 (e) 海岸警卫队采购程序(CGAP) (f) 预算的准备、提交和执行,管理和预算办公室(OMB)第 A-11 号通告(系列) (g) 电磁频谱管理和使用政策与程序,国防部指令(DODI)4650.1 (h) 联合频谱干扰解决(JSIR)程序,参谋长联席会议主席指令(CJCSI)3320.02(系列)(整体文件保密) (i) 联合频谱干扰解决(JSIR),CJCSI 3320.02(系列) (j) 联合频谱干扰解决(JSIR),参谋长联席会议主席手册(CJCSM)3320.02(系列) (k) 在美国和加拿大进行电子攻击以进行测试、训练和演习, CJCSM 3212.02 (系列) (l) 执行影响 GPS 的测试、训练和练习,CJCSM 3212.03 (系列)
现代航空与几年前已大不相同。技术创新和现代化正在以越来越快的速度发展。国际民航组织成员国往往无法实施重大技术里程碑,更不用说以协调的方式实施了。为避免新通信、导航和监视/空中交通管理 (CNS/ATM) 技术的实施不平等和不兼容,国际民航组织需要继续改进国际民航组织监管条款的制定/采用过程,并达成共识,以便及时有效地推出。根据第 13 届空中航行会议的建议和最近的大会决议,国际民航组织开展了综合通信、导航和监视 (CNS) 和频谱 (CNSS) 项目,重点关注 CNS 系统和频谱效率的中长期发展,同时改善 CNS 基础设施的全球协调,并确定 CNS 系统和频谱访问标准化的全新精简框架。在继续坚定地关注航空安全和效率的同时,这一新框架将以有效且经过充分验证的方式利用来自行业的意见,从而确保航空业仍然是频谱资源的负责任用户,同时实现整体系统改进。本报告第 2 章提出了 CNSS 发展的高级路线图草案(以几个专门的路线图为基础)。总的来说,这些概述了中期(2040 年以后)和长期(2050 年以后)必要的战略里程碑和最终目标。国际民航组织优先实施现有标准,而不是制定新标准。CNS 和航空电子技术发展路线图包括灵活的系统设计等新概念,这些概念为最大限度地提高航空业使用其分配频谱的效率提供了机会。结果将有助于:(a) 及早发现与频谱相关的问题和技术差距;(b) 制定具体的技术和性能规范,以支持以全球协调的方式实施未来系统。基于性能的标准比规定性标准和详细的技术规范更受青睐。面对 CNSS 技术的快速发展,相关的 ICAO CNSS 标准框架需要发展。否则,就无法确保以协调的方式和必要的速度制定 SARP、行业标准和详细的技术规范,以确保全球互操作性和持续的高安全水平。实现这一目标将是一项相当大的挑战。然而,最佳方法需要由国际民航组织、各国和整个航空界(包括新进入者)及时确定。为了确定平衡“最低限度基本 CNSS SARP”和“详细技术规范”的最佳方法,ICNSS-TF 已承诺审查和开发潜在的新标准化框架,以更好地支持行业系统开发;并对新系统所需的 CNSS 标准框架以及国际民航组织内部对由此产生的行业投入的任何所需验证活动进行分类。本报告第 3 章将进一步讨论此问题。虽然已经取得了相当大的进展(在本报告中),但这项工作的最终目标是提出一系列建议,供未来大会批准。鼓励各国、国际组织和行业利益攸关方支持国际民航组织继续开展这项工作。
本研究基于当代的提议,即不同的意识状态可以通过神经复杂性和临界动力学来量化。为了检验这一假设,研究旨在使用复杂性和临界性框架中的非线性技术以及功率谱密度来比较三种冥想条件的电生理相关性。30 名冥想熟练的参与者在一个会话中接受了 64 通道脑电图 (EEG) 测量,该会话包括无任务基线休息(闭眼和睁眼)、阅读条件和三种冥想条件(无思绪空虚、存在监测和集中注意力)。使用临界理论(去趋势波动分析、神经元雪崩分析)、复杂性度量(多尺度熵、Higuchi 分形维数)和功率谱密度的分析工具对数据进行了分析。对比了任务条件,并比较了效果大小。应用偏最小二乘回归和受试者操作特性分析来确定每个测量的判别准确度。与闭眼休息相比,冥想类别空虚和集中注意力显示出更高的熵值和分形维数。在所有冥想条件下,长程时间相关性均下降。集中注意力和阅读的临界指数值最低。伽马波段(0.83-0.98)、全局功率谱密度(0.78-0.96)和样本熵(0.86-0.90)的判别准确率最高。确定了不同冥想状态的电生理相关性,并确定了非线性复杂性、关键大脑动力学和光谱特征之间的关系。冥想状态可以用非线性测量来区分,并通过神经元复杂程度、长程时间相关性和神经元雪崩中的幂律分布来量化。
摘要 — 研究表明,通信系统和接收器受到高功率相邻信道信号(称为阻塞器)的影响,这些信号会使射频 (RF) 前端进入非线性操作。由于物联网 (IoT) 等简单系统将与复杂的通信收发器、雷达和其他频谱消费者共存,因此需要采用简单但自适应的 RF 非线性解决方案来保护这些系统。因此,本文提出了一种灵活的数据驱动方法,该方法使用简单的人工神经网络 (ANN) 来帮助消除解调过程中的三阶互调失真 (IMD)。我们引入并数值评估了两个人工智能 (AI) 增强型接收器——ANN 作为 IMD 消除器和 ANN 作为解调器。我们的结果表明,简单的 ANN 结构可以显著改善具有强阻塞器的非线性接收器的误码率 (BER) 性能,并且 ANN 架构和配置主要取决于 RF 前端特性,例如三阶截取点 (IP3)。因此,我们建议接收器具有硬件标签和随时间监控这些标签的方法,以便可以有效地定制 AI 和软件无线电处理堆栈并自动更新以应对不断变化的操作条件。索引术语 —AI、ANN、IMD、IP3、频谱共享。
SpaceX 正在利用其在空间系统制造、设计和运营方面积累的专业知识来开发 Starlink,这是一个卫星星座,旨在为新西兰和全球任何地方提供高速、低延迟、价格具有竞争力的宽带服务。SpaceX 的第一代星座由 4,400 多颗非地球静止轨道 (NGSO) 卫星和采用先进通信和空间运营技术的广泛地面基础设施组成。SpaceX 已在该系统上投资了数十亿美元,目前平均每月发射 120 颗卫星,同时建造网关和最终用户终端天线。Starlink 旨在通过优化其与其他授权卫星和地面用户灵活共享频谱的能力来高效利用无线电频谱资源,包括通过先进的波束成形和数字处理技术。SpaceX 目前将卫星连接到 Ku 波段的客户用户终端,用于上行链路和下行链路频率,网关链路位于 Ka 波段。
无线电频谱是一种稀缺的自然资源,对许多商业和政府活动至关重要。1 例如,商业实体将频谱用于无线服务、广播电视和其他目的。联邦政府将频谱用于空中交通管制、野火控制、天气观测、执法、边境安全、国防等。由于商业 5G 电信和其他需要额外频谱的新技术等原因,频谱需求已经增加,预计还会继续增加。2 但是,所有可用频谱都已指定供联邦和非联邦用户使用。商务部的国家电信和信息管理局 (NTIA) 是管理联邦分配频谱的实体,负责促进整个联邦政府以最佳和最有效的方式使用频谱资源,这与联邦机构的需求和使命一致。3 负责评估其频谱需求并向 NTIA 报告数据的各个机构也需要明智地管理其频谱使用。NTIA 和机构依靠信息技术 (IT)(例如软件应用程序和数据库)来管理频谱使用。然而,NTIA 最近强调,现有 IT 已经过时并且阻碍了频谱管理。
摘要 — 我们总结了一些关键的频谱感知测量挑战和最新进展。感知的实验室测试因其在现代硬件中不可分割且通常嵌入其中的作用而变得复杂。结果很难校准,因为物理参数通常是临时指定的或定义不明确的。除了二进制占用检测之外,传感器还需要更复杂的信号分类,这大大增加了测试范围。由于缺乏可接受的可测试参数来评估频谱感知对系统间频谱共享的贡献,频谱共享测试受到了进一步的阻碍。我们在此讨论的测量需求和方法涵盖导波和辐射物理测量、网络测量以及商业和政府频谱使用等领域。