机器人辅助手术是一种最小的浸润性手术(钥匙孔手术)的一种形式,您的外科医生分别进行4-5个切口,每个切口长约0.5-1 cm。之后,他或她坐在您旁边的控制台上,允许它们在3-D中看到,以示为晶体清除,放大的手术区域的视图,以及在身体内部具有额外运动范围的控制仪器。
在DMV中,过境还会导致空气更清洁并改善了健康结果。例如,进行过境的人每天进行大约30分钟的额外运动,从而增加心脏健康,增强肌肉并降低心脏病的风险。过境还避免了8公吨的细颗粒物,从而污染空气,从而造成不利的健康影响。此外,运输速度比驾驶汽车更安全20倍,帮助该地区实现了减少与运输相关的死亡和伤害的目标。
如果有风和洋流数据,预测石油位置的任务就会变得简单,因为两者都对浮油的移动有影响。经验表明,浮油会以大约 3% 的风速顺风移动。在存在地表水流的情况下,任何风驱动的运动都会叠加上 100% 水流强度的石油额外运动。在靠近陆地的地方,预测石油运动时必须考虑任何潮汐流的强度和方向,而在更远的海上,其他洋流的贡献比潮汐运动的周期性更重要。因此,了解盛行风和洋流后,就可以从已知位置预测浮油的移动速度和方向,如上图 1 所示。存在可以绘制石油泄漏轨迹的计算机模型。计算机模型和简单的手动计算的准确性取决于所用水文数据的准确性以及风速和风向预测的可靠性。
摘要 长期以来,技术与神经外科一直齐头并进。过去几十年来,神经外科机器人技术发展迅速,但要成为标准神经外科手术的“常规”元素,还有很长的路要走。除了它们比人类具有的明显优势(即精确度、一致性、耐久性和可重复性)之外,机器人还提供了超出人类解剖学可行性的额外运动自由。自 1985 年首次投入实际应用以来,机器人技术的前景已刺激了众多此类设备的开发和设计,以应用于神经外科。在当今时代,机器人在神经外科中的作用仅限于为深颅目标、活检、脊柱螺钉置入、深部脑刺激和立体定向放射外科规划运动和轨迹。这篇叙述性的非系统性综述讨论了各种机器人系统的发展,重点介绍了它们的神经外科应用。
四肢瘫痪患者表示,恢复手臂和手部功能是恢复独立性最重要的因素之一。我们研究的总体目标是开发辅助技术,使四肢瘫痪患者能够控制功能性伸手动作。这项研究是朝着我们的总体目标迈出的第一步,它评估了在实验环境中使用眼球运动来控制效应器运动的可行性。我们旨在了解对眼睛施加的额外运动要求如何影响功能性伸手过程中的眼手协调。我们特别感兴趣的是,当眼睛的感觉和运动功能因额外的运动责任而纠缠在一起时,眼球注视误差会受到怎样的影响。我们记录了参与者在伸手去拿显示器上的目标时的眼球和手部运动。我们在参与者的注视点位置处显示一个光标,这可以被认为类似于对辅助机器人手臂的控制。为了测量眼球注视误差,我们使用离线过滤器从原始眼球运动数据中提取眼球注视。我们将注视点与显示器上显示的目标位置进行了比较。结果表明,人类不仅能够利用眼球运动将光标引导至所需位置(1.04 ± 0.15 厘米),而且误差与手的误差相似(0.84 ± 0.05 厘米)。换句话说,尽管在直接控制效应器的眼球运动时,眼睛承担了额外的运动责任,但协调功能性伸展运动的能力并未受到影响。这项研究的结果支持使用眼睛作为控制运动的直接命令输入的有效性。