图1样本算盘计算程序和研究设计。(a)32 + 84的算盘计算的示例。从右至左侧的三列表示数字,数百个数字。算在算盘上部的每个珠子在向下推时表示五个,而算盘下部的每个珠子则在向上推时表示1。为了实现32 + 84的计算,(a)将两个数字列中的两个珠子向下推(↓),(b)(b)将数百位数字柱中的一个珠子向上推(↑)(添加八个等于添加10个缩影2)。然后,(c)将一个数字列上部的一个珠子向下推(↓)和(d)(d)在一个数字柱的下部向下推一个珠子(↓)(添加四个平均值,添加5个量为1个)。该计算的结果为116。(b)研究设计。参与者在一年级开始时分配给基于算盘的心理计算培训(AMC)或对照组。AMC小组的儿童从一年级开始就完成了5年的纵向培训(每周2小时)。在第1年的时间点(1年培训后)收集结构和静止状态功能MRI扫描。数学能力从第一个时间点评估到第2,第三或第4个时间点(经过3 - 5年的培训后)(有关更多详细信息,请参见材料和方法)。对照组除了AMC培训外完成了研究的所有方面。
6。Baizabal-Carvallo JF,帕金森主义Jankovicj。额颞痴呆中的运动和遗传学的动荡和遗传学。nat Rev Neurol。2016; 12:175-185。 7。 Lomen-Hoerth C,Anderson T,Miller B. 杏仁性的侧面硬化症和额颞痴呆的重叠。 神经病学。 2002; 59:1077-1079。 8。 Dubois B,Feldman HH,Jacova C等。 促进阿尔茨海默氏病的研究诊断标准:IWG-2标准。 柳叶刀神经。 2014; 13:614-629。 9。 Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2016; 12:175-185。7。Lomen-Hoerth C,Anderson T,Miller B.杏仁性的侧面硬化症和额颞痴呆的重叠。神经病学。2002; 59:1077-1079。 8。 Dubois B,Feldman HH,Jacova C等。 促进阿尔茨海默氏病的研究诊断标准:IWG-2标准。 柳叶刀神经。 2014; 13:614-629。 9。 Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2002; 59:1077-1079。8。Dubois B,Feldman HH,Jacova C等。促进阿尔茨海默氏病的研究诊断标准:IWG-2标准。柳叶刀神经。2014; 13:614-629。9。Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。Jack CR,Bennett DA,Blennow K等。NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。阿尔茨海默氏症痴呆症。2018; 14:535-562。 10。 Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。 nat Rev Neurol。 2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2018; 14:535-562。10。Borroni B,Padovani A.痴呆症:一种用于FTLD中分子诊断的新算法。nat Rev Neurol。2013; 9:241-242。 11。 Rademakers R,Neumann M,Mackenzie IR。 了解额颞痴呆的分子基础的进步。 nat Rev Neurol。 2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2013; 9:241-242。11。Rademakers R,Neumann M,Mackenzie IR。了解额颞痴呆的分子基础的进步。nat Rev Neurol。2012; 8:423-434。 12。 Moore KM,Nicholas J,Grossman M等。 症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。 柳叶刀神经。 2020; 19:145-156。 13。 Premi E,Grassi M,Van Swieten J等。 认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。 大脑。 2017; 140:1784-1791。2012; 8:423-434。12。Moore KM,Nicholas J,Grossman M等。症状发作时的年龄以及遗传额颞范围的死亡与疾病持续时间:国际回顾性队列研究。柳叶刀神经。2020; 19:145-156。13。Premi E,Grassi M,Van Swieten J等。认知储备和TMEM106B基因型调节症状额颞痴呆中的脑损伤:一项Genfi研究。大脑。 2017; 140:1784-1791。大脑。2017; 140:1784-1791。14。Rohrer JD,Nicholas JM,Cash DM等。在遗传额颞痴呆倡议(GENFI)研究中,遗传额颞痴呆症的症状性认知和神经解剖学变化:横断面分析。柳叶刀神经。2015; 14:253-262。 15。 STACKARONI AM,COBIGO Y,GOH S-EM等。 个性化的动物分数可以预测家族性额颞叶变性中的痴呆发作。 阿尔茨海默氏症的痴呆症。 2020; 16:37-48。 16。 Pottier C,Zhou X,Perkerson III RB等。 额颞Lobar变性和GRN突变患者的疾病风险和年龄的潜在遗传改性剂:全基因组关联研究。 柳叶刀神经。 2018; 17:548-558。 17。 Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。 j阿尔茨海默氏症。 2021:1-16。 18。 Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。2015; 14:253-262。15。STACKARONI AM,COBIGO Y,GOH S-EM等。个性化的动物分数可以预测家族性额颞叶变性中的痴呆发作。阿尔茨海默氏症的痴呆症。2020; 16:37-48。16。Pottier C,Zhou X,Perkerson III RB等。额颞Lobar变性和GRN突变患者的疾病风险和年龄的潜在遗传改性剂:全基因组关联研究。柳叶刀神经。2018; 17:548-558。 17。 Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。 j阿尔茨海默氏症。 2021:1-16。 18。 Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。2018; 17:548-558。17。Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。 j阿尔茨海默氏症。 2021:1-16。 18。 Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Ibanez A,Parra MA,ButlerforC。拉丁美洲和加勒比海痴呆症联盟(LAC-CD):从网络到研究再到实施科学。j阿尔茨海默氏症。2021:1-16。18。Ibanez A,Yokoyama JS,Possin KL等。 多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。 前神经。 2021; 12:1-16。 19。 Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Ibanez A,Yokoyama JS,Possin KL等。多方共同体扩大拉丁美洲痴呆症研究(Redlat):驱动多中心研究和实施科学。前神经。2021; 12:1-16。19。Parra MA,Baez S,SedeñoL等。 拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。 阿尔茨海默氏症的痴呆症。 2021; 17:295-313。 20。 Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Parra MA,Baez S,SedeñoL等。拉丁美洲的痴呆症:铺平了迈向区域行动计划的道路。阿尔茨海默氏症的痴呆症。2021; 17:295-313。20。Ryan B,Baker A,Ilse C等。 诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。 21。Ryan B,Baker A,Ilse C等。诊断临床前痴呆症:NZ遗传额颞痴呆研究(FTDGENZ)。21。n Z Med J。2018; 131:88-91。 Mackenzie IR,Neumann M.皮层下TDP-43病理学验证皮质FTLD-TDP亚型,并展示了C9orf72突变病例的独特方面。 acta neuropathol。 2020; 139:83-98。 22。 Jones DT,Knopman DS,Graff-Radford J等。 在体内18F-AV-1451 tau PET信号中的Maptmmuntriers中的tau PET信号随预期的tau iso形式而变化。 神经病学。 2018; 90:E947-54。 23。 Bevan-Jones RW,Cope TE,Jones SP等。 [18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。 Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,2018; 131:88-91。Mackenzie IR,Neumann M.皮层下TDP-43病理学验证皮质FTLD-TDP亚型,并展示了C9orf72突变病例的独特方面。acta neuropathol。2020; 139:83-98。22。Jones DT,Knopman DS,Graff-Radford J等。 在体内18F-AV-1451 tau PET信号中的Maptmmuntriers中的tau PET信号随预期的tau iso形式而变化。 神经病学。 2018; 90:E947-54。 23。 Bevan-Jones RW,Cope TE,Jones SP等。 [18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。 Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,Jones DT,Knopman DS,Graff-Radford J等。在体内18F-AV-1451 tau PET信号中的Maptmmuntriers中的tau PET信号随预期的tau iso形式而变化。神经病学。2018; 90:E947-54。 23。 Bevan-Jones RW,Cope TE,Jones SP等。 [18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。 Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,2018; 90:E947-54。23。Bevan-Jones RW,Cope TE,Jones SP等。[18 f] AV-1451结合在额颞痴呆中增加,这是由于C9ORF72膨胀引起的。Ann Clin Transl Neurol。 2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,Ann Clin Transl Neurol。2018; 5:1292-1296。 24。 Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,2018; 5:1292-1296。24。Karikari T,Pascoal T,Ashton N等。 等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。 柳叶刀神经。 2020。在印刷中。 25。 Janelidze S,Mattsson N,Palmqvist S等。 血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,Karikari T,Pascoal T,Ashton N等。等离子磷酸-TAU181作为阿尔茨海默氏病的生物标志物:使用来自四个前瞻性队列的数据的开发和验证预测模型。柳叶刀神经。2020。在印刷中。25。Janelidze S,Mattsson N,Palmqvist S等。血浆P-TAU181在阿尔茨海默氏病中:与其他生物标志物的关系,
ione O. C. Wollaccott 1, *,Image J.Kathryn Knowles 1,2,Lucy L. Russell 1,Caroline V. Heslegrave 2,James B. Rowe 3,Borroni 4,Daniela Galimmberti 5:6,Tiraboschi 11,Tiraboschi 11,Maria Masellis 8,Maria Carmela Carmela tartaglia tartaglia tartaglia tartaglia tartaglia tartaglia tartaglia tartaglia robert laforce 21:matthis synatofs synalofzik 26.27.27.27.27,Rik vanden。 43,44,亨利格2:45,46,47,乔纳森·罗勒1.2
持久同源性为从脑网络中提取隐藏的拓扑信号提供了一种强大的工具。它捕获了跨多个尺度的拓扑结构的演变,称为过滤,从而揭示了在这些尺度上持续存在的拓扑特征。这些特征总结在持久性图中,并使用 Wasserstein 距离量化它们的差异。然而,Wasserstein 距离不遵循已知的分布,这对现有参数统计模型的应用构成了挑战。为了解决这个问题,我们引入了一个以 Wasserstein 距离为中心的统一拓扑推理框架。我们的方法没有明确的模型和分布假设。推理以完全数据驱动的方式进行。我们将这种方法应用于从两个不同地点收集的颞叶癫痫患者的静息态功能磁共振图像 (rs-fMRI):威斯康星大学麦迪逊分校和威斯康星医学院。重要的是,我们的拓扑方法对由于性别和图像采集而导致的变化具有鲁棒性,无需将这些变量视为干扰协变量。我们成功定位了对拓扑差异贡献最大的大脑区域。本研究中所有分析使用的 MATLAB 包可在 https://github.com/laplcebeltrami/PH-STAT 上找到。
积极的情绪是指一个情感家庭,其中包括幸福,娱乐,依恋爱,养育爱,敬畏和热情等(Shiota,Neufeld,Yeung,Yeung,Moser,Moser和Perea,2011年)。这些情绪具有重要的社会功能,促进方法行为,激励社会参与,促进新的社交联系(Fredrickson,2004年),并逆转由负面情绪引起的生理激活(Fredrickson&Levenson,1998)。一定程度的积极情绪反应性被认为是最佳的;太低或太高的水平可能是有问题的。例如,积极情绪过高的基础临床症状,例如阿内迪尼和抑郁症,而过高的水平会导致不适当的人际边界,风险危险和躁狂(Gruber,Harvey,Harvey和Purcell,&Purcell,2011年)。分布在情感上和情绪调节的分布式大脑系统协同行动,以产生观察到的积极情绪反应的水平(通常以面部行为,生理学和主观经验的变化来衡量)。因此,支持积极情绪的神经系统的损伤是否导致情绪柔和或强化的情绪应取决于解剖学损伤的基因座。通常,对情绪产生电路的损害应降低积极的情绪反应性,而对情绪调节电路的损害应削弱抑制作用,从而导致高度带来积极的情绪。长期以来一直在争论积极情绪在大脑中横向的程度。两条证据支持这一结论。While emotion generating sys- tems (i.e., projections from pregenual anterior cingulate cor- tex to the central nucleus of the amygdala, hypothalamus, and brainstem) initiate rapid emotional responses to positive emotional cues ( Saper, 2002 ), emotion regulating systems (i.e., ventrolateral prefrontal cortex, orbitofrontal cortex, dorso- medial prefrontal cortex, and pre/supplementary motor area), with connections to striatum, thalamus, and subthalamic nuclei, promote down-regulation of affective responding in ways that are commensurate with individual goals and the social context ( Aron, 2007; Ochsner & Gross, 2005; Wager, Davidson, Hughes, Lindquist, & Ochsner, 2008 ).有些人认为对积极和负面情绪的感知和表达存在正确的半球优势(Tucker,1981),但其他人则建议左半球在积极情绪中起着主导作用(Davidson&Fox,1982)。先前的研究得出的结论是,左半球损害通常会减少积极的情绪,而右半球损害通常会增加积极的情绪。在WADA的研究中,可以停用右半球(通过单侧氨基脂质注射杏仁钠)但保留左侧的左半球,患者经常表现出乐观和欢笑(Perria,Rosadini和Rossi,&Rossi,&Rossi,1961; Sackeim等,Sackeim等,1982)。同样,许多病变研究,但不是全部(House,Dennis,Warlow,Hawton和Molyneux,1990),发现右半球损伤通常会导致笑声和微笑(Gainotti,1972; Sackeim等,1982)。积极的情绪被认为在右半球损害或功能障碍的范围内持续存在,因为
缩写:AAV:腺相关病毒; AAV9:腺相关病毒血清型9;中枢神经系统:中枢神经系统; CSF:脑脊液; ELISA:酶联免疫吸附测定; FB:配方缓冲液; FTD:额颞痴呆; GRN:颗粒蛋白; GRN - / - :GRN淘汰;下摆:半球; HPGRN:人类PGRN; ITR:反向终端重复; MOI:感染的多样性; N/A:不适用; NFL:神经丝轻链; NHP:非人类灵长类动物; PBS:磷酸盐缓冲盐水; PGRN:pRogranulin; SCMAS:线粒体亚基三磷酸合酶; SD:标准偏差; SMA:脊柱肌肉萎缩; TDP-43:交易反应DNA结合蛋白43; UNTR:未经处理; VA:腹侧前核; VG:矢量基因组; WT:野生型。
P. Tristin Best,MSC,John C. Van Swieten,医学博士,博士,Lize Corrine Jiskoot,PhD,Dclinpsy,Ferin Moreno,MD,PhD,Raquel S´NOTZ-Valle,MD,MD,MD,PhD,PhD,Robert Laforce,Robert Laforce,Robert Laforce,Robert Laforce,Robert Laforce,Jr.医学博士Carmela Tartaglia,James B. Rowe,博士,医学博士Barbara Borroni,MD,MATTHIS SANOFZIK,MD,DANIELA GALIMBERTI,PHD,RIK VANDENBERI,RIK VANDENBERGE医学博士,Isabelle le ber,医学博士,博士,Pietro Tiraboschi,医学博士,医学博士,伊莎贝尔·桑塔纳,医学博士,博士,佛罗伦萨·帕斯奎尔,医学博士,医学博士,博士,约翰内斯·莱文,医学博士,马库斯·奥托,马库斯·奥托,医学博士路易丝·罗素(Louise Russell),博士,马丁娜·博科塔(Martina Bocchetta),博士,乔纳森·丹尼尔·罗勒(Jonathan Daniel Rohrer),MRCP,Gabriel A. Devennyi,PhD,Mallar Chakravarty,PhD,*和Simon Ducharme,MD,MD,*
Sonja Schfa fa Onecker,医学博士,弗朗西斯科·马丁内斯·穆尔西亚(Francisco J. Martinez-Murcia)rer。MD,PhD,Lize C. Jiskoot博士,DCLINPSY,HARRO SEELAAR,医学博士,PhD,Raquel Sanchez-Valle,医学博士,博士,Robert Laforce,Jr. Alexandre deMendonça,医学博士,博士,Pietro Tiraboschi,医学博士,伊莎贝尔·桑塔纳(Isabel Santana) Isabelle le ber,医学博士,博士,伊丽莎白·费格(Elizabeth Finger),医学博士,玛丽亚·卡梅拉·塔塔格利亚(Maria Carmela Tartaglia)博士学位,用于遗传额颞痴呆倡议(GENFI),Josef Priller,医学博士,Gounter U. H” Ogliner,MD和Johannes Levin,MD
1 英国牛津大学约翰拉德克利夫医院纳菲尔德临床神经科学系、大脑功能性磁共振成像中心 (FMRIB) 威康综合神经影像中心,英国伦敦;2 英国伦敦国王学院生物医学工程系,英国伦敦;3 荷兰奈梅亨拉德堡德大学唐德斯大脑、认知和行为研究所,荷兰奈梅亨;4 美国亚特兰大埃默里大学亚特兰大儿童保健中心马库斯自闭症中心;5 英国牛津大学生理学、解剖学和遗传学系;6 德国马格德堡马格德堡大学生物学研究所;7 德国马格德堡莱布尼茨神经生物学研究所;8 英国牛津大学实验心理学系威康综合神经影像中心
FTD 的估计患病率为 15-22/100 000,人口研究表明男女患病率相等 [3]。临床上,FTD 患者可表现为三种典型临床综合征之一:行为变异型 FTD (bvFTD) 和两种语言变异型、语义性痴呆和进行性非流利性失语症 (PNFA)(见下文)。FTD 可与运动神经元病/肌萎缩侧索硬化症 (MND/ALS) (FTD-MND)、皮层基底节综合征 (CBS) 和进行性核上性麻痹 (PSP) 综合征重叠 [4]。FTD 是一种高度遗传性疾病,约 30-50% 的病例报告有阳性家族史 [5]。三种基因的突变,即微管相关蛋白 tau ( MAPT )、前颗粒蛋白 ( GRN ) 和 9 号染色体开放阅读框 72 ( C9orf72 ) 基因,是大多数家族性病例的病因,约占所有 FTD 病例的 10-20% [5,6]。目前,FTLD 的神经病理学分类可识别出五种