本出版物载列的所有内容,包括但不限于所有数据、地图、文字、图像、图画、图表、照片、影片及数据或其他材料的汇编(统称“材料”)均受知识产权所规限。该等知识产权由香港特别行政区政府(统称“政府”)拥有或由该等材料的知识产权拥有人特许政府处理该等材料,以供本出版物所述的所有用途。将材料用于非商业用途须遵守“香港天文台出版物内材料的非商业用途使用条件”(可于以下网址查阅:https://www.hko.gov.hk/tc/publica/non-commercialuse.htm)所列的所有条款和条件。此外,除非符合《香港天文台刊物资料商业用途使用条件》(可于 https://www.hko.gov.hk/en/publica/commercialuse.htm 找到)所列的所有条款及条件,并取得香港天文台(下称“天文台”)代表政府的事先书面授权,否则严禁将资料用作商业用途。如有查询,请以电邮(mailbox@hko.gov.hk)或传真(+852 2311 9448)或邮寄方式与天文台联络。
本出版物所载的所有内容,包括但不限于所有数据、地图、文字、图像、图画、图表、照片、录像及数据或其他材料的汇编(统称“材料”)均受知识产权所规限。该等知识产权由香港特别行政区政府(统称“政府”)拥有或已获该等材料的知识产权拥有人特许政府处理该等材料,以供本出版物所载的所有用途。如将材料用于非商业用途,则须遵守“香港天文台出版物所载材料非商业用途使用条件”(可于以下网址查阅:https://www.hko.gov.hk/en/publica/non-commercialuse.htm)所列的所有条款和条件。此外,除非符合《香港天文台刊物资料商业用途使用条件》(可于 https://www.hko.gov.hk/en/publica/commercialuse.htm 查阅)所列的所有条款及条件,并取得香港天文台(下称“天文台”)代表政府的事先书面授权,否则严禁将资料用作商业用途。如有查询,请以电邮(mailbox@hko.gov.hk)或传真(+852 2311 9448)或邮寄方式与天文台联络。
本刊物所载的所有内容,包括但不限于所有数据、地图、文字、图像、图画、图表、照片、影片及数据或其他资料的汇编(统称“资料”)均受香港特别行政区政府(统称“政府”)所拥有或该等资料的知识产权拥有人已授权政府处理该等资料,以作本刊物所载的所有用途。资料作非商业用途时,须遵守“香港天文台刊物内资料作非商业用途使用条件”(可于以下网址查阅:https://www.hko.gov.hk/en/publica/non-commercialuse.htm)所列的所有条款和条件。此外,除非符合《香港天文台刊物内资料商业用途使用条件》(可于 https://www.hko.gov.hk/en/publica/commercialuse.htm 找到)所列的所有条款及条件,并取得香港天文台(下称“天文台”)代表政府的事先书面授权,否则严禁将资料用作商业用途。如有查询,请以电邮(mailbox@hko.gov.hk)或传真(+852 2311 9448)或邮寄方式与天文台联络。
国际民用航空组织。地址:Document Sales Unit, 999 University Street, Montréal, Quebec, Canada H3C 5H7 电话:+1 (514) 954-8022;传真:+1 (514) 954-6769; Sitatex:YULCAYA;电子邮件:sales@icao.int;万维网:http://www.icao.int 喀麦隆。 KnowHow, 1, Rue de la Chambre de Commerce-Bonanjo, B.P. 4676, 杜阿拉 / 电话:+237 343 98 42;传真:+237 343 89 25;电子邮件:knowhow_doc@yahoo.fr 中国。荣耀大师国际有限公司,上海浦东东方路428号宏深贸易中心434B室,邮编:200120 电话:+86 137 0177 4638;传真:+86 21 5888 1629;电子邮件:glorymaster@online.sh.cn 埃及。国际民航组织中东办事处区域主任,埃及民航大厦,开罗机场路,赫利奥波利斯,开罗 11776 电话:+20 (2) 267 4840;传真:+20 (2) 267 4843; Sitatex:凯卡亚;电子邮件:icaomid@cairo.icao.int 法国。国际民航组织欧洲和北大西洋办事处区域主任,地址:3 bis, Villa Émile-Bergerat, 92522 Neuilly-sur-Seine (Cedex) 电话:+33 (1) 46 41 85 85;传真:+33 (1) 46 41 85 00; Sitatex:PAREUYA;电子邮件:icaoeurnat@paris.icao.int 德国。 UNO-Verlag GmbH, August-Bebel-Allee 6, 53175 Bonn / 电话:+49 (0) 228-94 90 2-0;传真:+49 (0) 228-94 90 2-22;电子邮件:info@uno-verlag.de;万维网:http://www.uno-verlag.de 印度。 Oxford Book and Stationery Co.,Scindia House,新德里 110001 或 17 Park Street,加尔各答 700016 电话:+91 (11) 331-5896;传真:+91 (11) 51514284 印度。小号
K. 微下击暴流风切变恢复的飞行引导研究 ............ David A. Hintorg NASA LaRC L. 风切变检测算法的分析与合成 ................................ Kioumars Najmabadi,波音 M. 使用个人计算机分析制导律性能 ................ Z Rene Barrios,霍尼韦尔�Sperry N. 机组人员与风切变系统的接口 ................................ Dave Carbaugh,波音 O.避免风切变的专家系统 ................................ Robert Stengel 和 Alex Stratton,普林斯顿大学 P. 起飞滑跑期间风切变对飞机停止距离的影响 ...... Terry Zweife_ Honeywell�Sperry Q.风切变风模型模拟器分析状态 ......................... Bernard Ades,DGAC/SFACT/TU-France R. 风切变预测检测器技术研究状态 ......................... C. Gandolfi,DGAC/STNA/3E S. 问题和10 月 19 日第一场和第二场的答案......................
1991 年 7 月和 8 月,在奥兰多国际机场对联邦航空管理局机场监视雷达 (ASR-9) 上附加的风切变处理器 (WSP) 进行了运行测试。通过测试,可以定量评估 WSP 的信号处理和风切变检测算法,并让空中交通管制员及其主管反馈系统的优势和劣势。测试期间的雷暴活动非常激烈;在 53 个测试日中,有 40 天低空风切变影响了跑道或进近/离场走廊。与之前对美国东南部 WSP 的评估一样,微下击暴流检测性能非常可靠。测试期间影响奥兰多机场的强微下击暴流中有 95% 以上被系统检测到。测试期间的阵风锋检测虽然在操作上有用,但考虑到 WSP 基本反射率和径向速度数据中阵风锋特征的质量,其可靠性并不如预期。随后开发的“机器智能”阵风锋算法显著提高了检测能力。操作测试的结果正在用于 WSP 的持续改进。
终端气象雷达和自动风切变探测系统向 NAS 控制器提供快速更新的终端气象观测,从而探测到风切变/微下击暴流并发出警报。在空中交通繁忙的航空终端,一百多个传统的自动风切变探测提供商不断将机器对机器的快速观测数据传送到 NAS 和 NextGen 气象处理系统、显示器和 NextGen 用户决策支持工具中。NextGen 可能会计划最终取代风切变/微下击暴流警报提供商,但预算和计划对替代品的更改通常会使传统风切变系统的剩余使用寿命不确定,可能会大幅延长。这一举措确保在整个 NextGen 过渡期间,无论替换计划和部署时间表是否可能发生变化或完全停止,传统风切变服务都不会出现缺口。与措施的关系:TDWR 和 WSDS 产品组合(ASR-WSP、LLWAS-NE、LLWAS-RS)总共提供了四个风切变探测程序,这些程序为 2015 年战略措施做出了贡献,确保每天有超过一百个自动终端风切变探测系统持续为美国近 90% 的 121 部商业航班提供自动风切变/微下击暴流探测服务。
20 世纪 80 年代中期,一系列与微下击暴流(强大的雷暴引起的下沉气流和发散性地面风切变)相关的商用飞机事故促使美国联邦航空管理局开发了终端多普勒气象雷达 (TDWR),为美国大型机场提供风切变检测和预警服务。林肯实验室的任务是开发 TDWR 原型以及所需的信号处理和模式识别算法,以提供高度可靠、全自动的风切变现象检测。该原型在科罗拉多州丹佛、密苏里州堪萨斯城和佛罗里达州奥兰多进行了 TDWR 运行演示。这些测试验证了 TDWR 概念的技术和操作可行性,并提供了有关风切变区域特征的宝贵数据,支持针对不同环境的检测算法优化。林肯实验室的 TDWR 原型活动促使美国联邦航空管理局从雷神公司采购了 45 台 TDWR。TDWR 网络在 20 世纪 90 年代全面部署,自 1994 年以来,美国没有发生过重大风切变相关事故。林肯实验室继续支持美国联邦航空管理局优化 TDWR 风切变检测算法的性能;现代化 TDWR 数据处理架构;并实施其他算法,包括雷暴跟踪和运动预测功能。
在基于物理的飞行动力学模拟中,描述和评估了双飞机平台 (DAP) 概念的基准配置,该模拟用于为期两个月的任务,作为佛罗里达中部低层平流层的通信中继,距离奥兰多市中心 150 英里。DAP 配置具有两个大型滑翔机式(翼展 130 英尺)无人机,它们通过一条可调节的长电缆连接(总可伸缩长度 3000 英尺),可利用可用的风切变有效地航行而无需推进。使用机载 LiDAR 风廓线仪预测风分布被发现是必要的,以使平台能够通过找到平台上足够的风切变来有效调整飞行条件以保持航行。与传统的太阳能飞机一样,该飞机从太阳能电池中获取电力,但当风切变过多时,它还会使用螺旋桨作为涡轮机来获取风能。 60,000 英尺附近长达一个月的大气剖面(间隔 3-5 分钟)来自卡纳维拉尔角 50 Mhz 多普勒雷达风廓线仪测量的存档数据,并用于 DAP 飞行模拟。对这些数据集的粗略评估表明,DAP 航行所需的风切变持续存在,这表明即使受到适度上升/下降率的限制,DAP 也可能航行超过 90% 的长达一个月的持续时间。DAP 的新型制导软件使用非线性约束优化技术来定义航点