本研究的目的是调查和量化在长距离耐力跑步中起搏器牵伸产生的空气动力学优势、生理和性能优势。实验测试是在风洞中进行的,两名跑步者在亚最大努力下以 4.72 米/秒的速度在相同的空气速度下进行了五分钟的跑步机跑步测试。通过比较有和没有牵伸的生理参数,获得了由于起搏器效应而导致的降低。使用 CFD 模拟来分析在风速为 4.72 米/秒时有和没有牵伸的空气动力学效应,即阻力和阻力系数。结果表明,与基线(单独跑步)相比,牵伸位置的阻力(-9.73%)和阻力系数(-9.73%)均有所下降。空气阻力的减少还会导致以下生理参数的降低,实验测试检测到:耗氧量(-5.46%)、代谢能力(-5.48%)、能量成本(-7.31%)、产生的二氧化碳(-7.40%)、每分钟通气量(-5.44%)、心率(-0.60%)、血乳酸浓度(-16.66%)、RPE(-13.89%)。结果表明,牵引对空气动力学参数有显著影响,但也对高度和中度训练的运动员的生理和表现变量有显著影响。
本专著总结了一项为期一年的研究(从 2002 年 6 月到 2003 年 7 月),研究内容涉及国家风洞和推进测试需求,以及美国国家航空航天局 (NASA) 的主要风洞 (WT) 和推进测试 (PT) 设施 1 持续满足这些需求的能力;该研究还确定了 NASA 内部所需的任何新投资和过剩产能。该研究重点关注对更大(因此建造和运营成本更高)测试设施的需求,并确定了 NASA WT/PT 设施面临的管理问题。本专著应引起 NASA、国防部、航空航天工业、管理和预算办公室、科学和技术政策办公室以及国会决策者的兴趣。本专著的详细支持信息包含在一份较长的配套技术报告中:
1 简介 讨论风洞中测试室的文献有限。主要原因是由于测试室的静态对称性,设计简单,要么使用圆形、正方形或矩形横截面,也与已经从收缩室流向测试室的流体有关 [1]。与空气动力学测试、湍流研究或风工程中的文章相关,它表明风洞在提供数据以分析样品与流体流动之间的相互作用方面发挥着重要作用。Manan 等人测试了混合动力汽车模型,而 Clarke 等人在设计阶段测试了自动驾驶汽车的空气动力学特性 [2],[3]。其他相关研究包括测试颗粒的液压输送 [4],以及研究磁场对电导率的相互作用,例如液态金属(汞、镓、钠等),它们受霍尔效应和物质因热量而产生的熵特性的影响 [4]。在大多数风洞设计中,风洞建设的重点是如何设计收缩
1 简介 讨论风洞中测试室的文献有限。主要原因是由于测试室的静态对称性,设计简单,要么使用圆形、正方形或矩形横截面,也与已经从收缩室流向测试室的流体有关 [1]。与空气动力学测试、湍流研究或风工程中的文章相关,它表明风洞在提供数据以分析样品与流体流动之间的相互作用方面发挥着重要作用。Manan 等人测试了混合动力汽车模型,而 Clarke 等人在设计阶段测试了自动驾驶汽车的空气动力学特性 [2],[3]。其他相关研究包括测试颗粒的液压输送 [4],以及研究磁场对电导率的相互作用,例如液态金属(汞、镓、钠等),它们受霍尔效应和物质因热量而产生的熵特性的影响 [4]。在大多数风洞设计中,风洞建设的重点是如何设计收缩
1 简介 讨论风洞中测试室的文献有限。主要原因是由于测试室的静态对称性,设计简单,要么使用圆形、正方形或矩形横截面,也与已经从收缩室流向测试室的流体有关 [1]。与空气动力学测试、湍流研究或风工程中的文章相关,它表明风洞在提供数据以分析样品与流体流动之间的相互作用方面发挥着重要作用。Manan 等人测试了混合动力汽车模型,而 Clarke 等人在设计阶段测试了自动驾驶汽车的空气动力学特性 [2],[3]。其他相关研究包括测试颗粒的液压输送 [4],以及研究磁场对电导率的相互作用,例如液态金属(汞、镓、钠等),它们受霍尔效应和物质因热量而产生的熵特性的影响 [4]。在大多数风洞设计中,风洞建设的重点是如何设计收缩
2.1 概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 2.2 数据收集。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 2.3 简单线性回归。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.4 多元线性回归。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 2.5 模型评估。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.6 假设诊断。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10
风力涡轮机比例模型的风洞试验是评估风力涡轮机空气动力学的一种经济有效的方法,可节省时间、成本并避免与全尺寸试验相关的不确定性。然而,风洞试验转子缩放程序的主要限制是无法将雷诺数与全尺寸相匹配。本文介绍了 DTU 10 MW 风力涡轮机风洞 1/75 比例转子的非平凡气动弹性优化设计、实现和实验验证。更具体地说,这项工作是为浮动式海上风力涡轮机 (FOWT) 应用而开发的(Lifes50+,Bayati 等人,2013 年,2014 年);尽管如此,所报告的方法和得出的结论在风力涡轮机转子缩放方面具有普遍有效性。最近也在风力涡轮机缩放方面做出了类似的努力(Bredmose,2014 年)。此外,在(Bottasso 等人,2014 年)中可以找到对缩放效应的深入分析,该分析涉及米兰理工大学风洞的先前活动:这项工作涉及气动弹性模型设计程序的定义,并且在推力和扭矩值匹配方面获得了良好的结果,并且正确缩放了叶片结构行为,同时考虑了弯曲 - 扭转缩放(Campagnolo 等人,2014 年)。
摘要:为研究上下旋翼干扰效应以及进给比、轴倾斜角和升力偏移对缩比同轴刚性旋翼系统气动性能的影响,对缩比同轴刚性旋翼系统在悬停和稳定前飞过程中的气动性能进行了实验研究。旋翼系统采用直径2 m、四叶片上下无铰链旋翼,安装在同轴旋翼试验台上。实验在中国空气动力研究与发展中心(CARDC)的φ3.2 m风洞中进行。旋翼系统在0°~13°的总距范围内进行了悬停测试,并在进给比高达0.6的情况下进行了前飞测试,重点关注了轴倾斜角和升力偏移扫掠。为了使共轴旋翼的运行方式与实际飞行方式相似,悬停飞行时将扭矩差调整为零,前飞时保持恒定升力系数。在同轴旋翼中以相同的螺距角设置进行了孤立单旋翼配置试验。悬停试验结果表明,下旋翼的品质因数 (FM) 值低于上旋翼,且均低于孤立单旋翼。此外,在相同的叶片载荷系数 (C T / σ) 下,同轴旋翼配置可以获得更好的悬停效率。前飞时,有效升阻比 (L/De) 为
5.4 在 1.4Hz 激励下 4 ◦ 阵风激发的机翼根应变时间历史... 54 5.5 H 2 闭环机翼根应变对阵风激励的响应时间历史... 55 5.6 H 2 闭环外侧副翼偏转对阵风激励的时间历史 55 5.7 H 2 闭环内侧副翼偏转对阵风激励的时间历史... 56 5.8 阵风激励下 H ∞ 闭环翼根应变响应的时间历史 56 5.9 阵风激励下 H ∞ 闭环外侧副翼偏转的时间历史 57 5.10 阵风激励下 H ∞ 闭环内侧副翼偏转的时间历史 57 5.11 加权和加权翼根应变的 Bode 幅值图 . . . . . . . . . 59 5.12 采样时间为 0 . 01 s 的 H 2 合成 . . . . . . . . . . . . . . . 59 5.13 采样时间为 0 . 01 s 的 H ∞ 合成 . . . . . . . . . . . . . . . . . . . . . . . 60 5.14 标准化翼根应变对标准化阵风激励的响应的 Bode 图 60 5.15 标准化外侧副翼对标准化阵风激励的响应的 Bode 图 61 5.16 标准化内侧副翼对标准化阵风激励的响应的 Bode 图 61 5.17 H 2 闭环翼根应变对阵风激励的响应时间历史 . 62 5.18 H 2 闭环外侧副翼偏转对阵风激励的时间历史 62 5.19 H 2 闭环内侧副翼偏转对阵风激励的时间历史 . 63 5.20 H ∞ 闭环翼根应变对阵风激励的响应时间历史 63 5.21 H ∞ c 的时间历史
摘要:低层建筑的风致屋顶压力通常在边界层风洞中测量。据记载,不同边界层风洞中缩小比例的建筑模型的压力统计数据差异很大。流动设施能力、模型设计和制造、仪器、测试设置和程序、特定的数据缩减方法以及研究人员的经验是影响风洞实验测量数据和结果的众多因素之一。考虑到上述变量列表,结果经常不同也就不足为奇了,因为每个变量都会带来潜在的误差源。为了确定从风洞测试中获得的压力统计数据中的驱动不确定性来源,使用 NIST 空气动力学数据库通过蒙特卡罗模拟执行详细的不确定性量化分析。这项工作具体展示了测量不确定性如何传递到风洞测试中感兴趣的数量。它还将提供对关键测量、不确定性来源的更好理解,并可能揭示压力统计结果之间存在差异的原因。