适航性超越了设计,并贯穿于维护和维修阶段。 数字线程将飞机设计、制造、维护和维修的各个方面放在一个单一的集成流程中,可以闭环故障报告、分析和纠正措施系统 (FRACAS)。这种集成的数字流程有助于识别预测的故障点,并为所需活动提供反馈,以确保飞机的安全性和可靠性。借助该系统的功能性数字孪生 3,所有者运营商可以从现场资产中获取数据,并确定飞机或部件是否保持其可靠性目标。如果没有,则进行进一步分析并更改维护计划。
当今活塞式双引擎飞机市场的特点是机型很少,属于这一类别的大多数在役飞机都超过 35 年,不再生产。Tecnam Aircraft Industries 致力于设计、开发和生产新型、创新、高效且价格合理的下一代 11 座双引擎飞机,符合 FAR 第 23 部分和 EASA CS-23 要求。这款名为 Tecnam P2012 Traveller 的飞机设计由 Tecnam 研究和设计团队开发,目前在 Tecnam Aircraft Industries 进行开发,初步设计由 Tecnam 著名且屡获殊荣的 Luigi Pascale 教授完成
摘要。当前的技术进步彻底改变了城市空中交通 (UAM) 和包裹递送的概念,同时还需要根据相关风险量化这些车辆的运行安全性。在当前的空中交通管制下,安全飞行对于电动垂直起降 (eVTOL) 车辆 UAM 至关重要。本文提出了一种基于能耗分布的条件风险值数据驱动的 UAM 车辆能耗预测和风险量化方法。在基于数据驱动的不同 eVTOL 飞行的能耗预测中,考虑了影响能耗的重要因素,例如密度高度、飞机设计、空速和防撞算法。此外,还部署了风险指标来评估与飞行相关的风险。
项目探讨了混合电气推进对减少CO 2的商业航空排放的潜力。突袭评估杂交对涵盖区域和SMR任务的混合飞机的四种不同配置的益处,并代表飞机设计中不同级别的干扰。此评估是与对电动组件的调查和混合动力火车的结构密切相关的。配置研究提供了组件设计和性能估计的规格,作为回报,这些规范是通过飞机的性能评估来合成的。最终目标是两个识别杂交的技术差距和关键推动因素,以详细阐述有前途应用的开发路线图。
莱特兄弟发明飞机后不久,威尔伯·莱特就设想,当“这一特性(平衡和操纵能力)”被解决后,飞行时代将到来[1]。事实上,飞行时代确实已经到来——民航运输已成为我们长途旅行的主要方式,军用飞机在国防中发挥着重要作用,航空业已成为世界经济不可或缺的一部分。毫无疑问,飞机飞行安全和效率极其重要。航空业、国家运输安全委员会、联邦航空管理局和美国国家航空航天局一直在努力将航空事故率降至最低。飞机设计/维护、导航/制导设备、交通控制系统、飞行员培训等的改进已经
摘要 电动动力系统具有与带有内燃机的传统动力系统不同的特性,并且需要非常规的飞机设计才能充分发挥其潜力。因此,本文介绍了一种识别带有电动动力系统的潜在飞机设计的方法。LuFo 项目 GNOSIS 的项目合作伙伴收集了动力系统架构、气动相互作用、机载系统和操作策略等领域的有前景的技术选项。从全球排放(CO 2 )、局部排放(NO X 和噪音)和运营成本方面评估了技术选项对通勤飞机的影响。评估考虑了 2025 年和 2050 年投入使用,并以参考飞机 Beechcraft 1900D 为基础。文献综述和简化计算使得能够对气动相互作用、系统和操作策略进行评估。初步的飞机设计工具通过引入“动力混合”和“动力分配”两个参数来评估不同的动力系统架构。随后,将兼容的技术选项汇编成技术篮,并使用与理想解的最短欧几里得距离和与最差解的最远欧几里得距离进行排序(按与理想解的相似性排序技术 (TOPSIS) 方法)。对 CS 23 法规的分析导致了高翼设计,并排除了在飞机尾部带有燃气涡轮的部分涡轮电动动力系统架构。对于 2025 年,选择了带有两个额外电动翼尖螺旋桨的部分涡轮电动动力系统。到 2050 年,串行混合动力系统使用燃气涡轮或燃料电池与电池组合,为机翼前缘的分布式电动推进器提供动力。在这两种情况下,飞机设计都包括电动环境控制系统、电动起落架和用于主飞行控制和起落架的电液执行器。