抽象承诺提供强大的遗传控制工具,基因驱动器是在多个双翅目,酵母和小鼠中构建的,以消除人群消除或修改。但是,尚不清楚这些技术是否可以应用于鳞翅目。在这里,我们使用内源性调节元件在响尾蛇飞蛾(DBM),木制紫罗兰氏菌中驱动CAS9和单引导RNA(SGRNA)表达,并在鳞翅目中测试第一个分裂基因驱动系统。DBM是经济上重要的全球农业害虫,对各种杀虫剂产生了严重的抵抗力,使其成为这种新型控制策略发展的主要候选者。在Cas9/sgrna transhepleozygotes中观察到了很高的体细胞编辑,尽管在随后的一代中没有揭示出显着的归宿。观察到Heritable Cas9介绍的种系裂解以及母体和父亲Cas9沉积,但在选定调节元素的控制下,速率远低于体细胞裂解事件,表明Cas9/sgrna的种系活性有强大但有限。我们的结果提供了宝贵的经验,为DBM和其他鳞翅目中基因驱动器或其他基于CAS9的基因控制策略铺平了道路。
摘要:昆虫ATP结合的盒式转运蛋白亚家族C2(ABCC2)的成员被称为苏皮鲁西斯芽孢杆菌(BT)的Cry1ac杀虫蛋白的受体。废除ABCC2功能结构域的突变已知会引起对Cry1ac的抗性,尽管报告的抗药性水平取决于昆虫物种的差异很大。在这项研究中,使用CRISPR/CAS9评估了ABCC2基因作为Helicoverpa Zea的推定CRY1AC受体的功能,该受体的主要有害生物是300多种农作物,以逐步消除不同的功能性ABCC2域。来自具有编辑昆虫线支持的生物测定结果,即ABCC2中的突变与7.3至39.8倍的CRY1AC耐药比(RR)有关。在部分或完全的ABCC2敲除之间检测到H. Zea之间对Cry1ac的敏感性的显着差异,尽管在敲除ABCC2的一半时观察到了最高的公差水平。基于在类似的研究中针对密切相关的飞蛾物种的类似研究中报道的> 500–1000倍的RR,在H. Zea敲除中观察到的低RR支持ABCC2不是该昆虫中主要的Cry1ac受体。
昆虫的生态成功通常取决于它们与有益的小动物的联系。然而,昆虫的发育涉及反复的蜕皮,这可能会对其微生物群落产生影响。在这里,我们调查了半代谢昆虫的微生物组的影响以及如何影响孕产妇护理是否可以调节这些影响。,我们饲养了有或没有飞蛾的欧洲耳朵少年,并使用16S rRNA metabarcoding分析了鸡蛋核心微生物组的原核分数,最近和在四个发育阶段和由此产生的成年人处于四个发育阶段和旧的蜕皮个体。获得的218个样品表明,在发育过程中,微生物组的分流性质不断变化,并且这些变化与细菌生物标志物有关。令人惊讶的是,这些变化不是在换羽期间发生的,而是在某些发育阶段的开始和结束之间。我们还发现,即使与母亲的最后一次接触是在成年后的两个月之前,也可以使用幼体和成年人的微生物组。总体而言,这些结果为我们对半脂质昆虫中原核微生物组(在)稳定性的理解及其脱离蜕皮的独立性提供了新的见解。更常见的是,他们质疑通过孕产妇护理在这种行为具有兼职的物种中维持家庭生活中微生物组获取的作用。
一组可再生和不可再生的资源将使人们受益的可再生资源被理解为自然资本资产(NCAS),并支持我们的经济活动所依赖的生态系统服务(Guerry等,2015; Leach等,2019)。生态系统服务(ES)被广泛定义为大自然为人类提供的服务,这些服务可能会变化,以及一些经济活动,例如农业,牲畜和林业从中受益。通常将它们归类为供应,监管,支持或文化服务。一些例子包括水和食物,授粉,物种栖息地,娱乐以及心理和身体健康(FAO,2022年)。一个生态系统需要正常运行,以便能够提供此类服务。彼此之间相互作用的物种和自然环境的微妙平衡将允许足够的生态系统功能,因此可以提供生态系统服务(Vos等,2014)。生态系统服务中断的原因有所不同,例如气候变化,富营养化和生物多样性损失。每当生态系统中的物种减少时,后者就会证明。这种损失可能会对生态系统的平衡产生负面影响,并破坏或阻碍生态系统服务的提供。例如,授粉剂的丧失,例如蜜蜂或飞蛾的物种,会影响授粉的生态系统服务(从这里开始的授粉服务)。同时,这可能会影响几种作物的生产并带来经济损失(Potts等,2016)。
抽象的转座子是移动遗传元件,可以移动到基因组或基因组之间的不同位置。长期以来,它们一直用作基因工程的工具,包括在各种生物中的转基因,插入诱变和标记切除术。源自白菜循环飞蛾的Piggybac转座子是有史以来最有前途的转座子工具之一,因为PiggyBac的优势是它可以转置而不会在切除的地点留下足迹。将Piggybac Transoson应用于植物中的精确基因组编辑,我们证明了从集成到水稻基因组中的转基因基因座的有效且精确的Piggybac Transposon切除。此外,只能通过同源重组介导的基因靶向靶靶标的精确基因修饰的结合以及使用PiggyBac Transposion通过大米中的piggyBac转置从靶基因座进行切除,从而实现了仅将所需点突变引入靶基因。此外,我们为piggybac介导的转带系统设计了序列特异性核酸酶的临时表达,以消除从宿主基因组中的转基因,而无需在成功诱导靶向诱变通过序列特异性核酸盐中促进靶向诱变后,在未经不必要的序列中使用。在这篇综述中,我们总结了我们以前的作品以及Piggybac Transposon基因工程的未来前景。
神经元是典型的生物信息处理器。然而,神经信息处理的理论模型,尤其是概念模型,越来越落后于我们对神经元作为电兴奋细胞的不断发展的经验理解。例如,过去二十年的实验工作已经明确证实,树突会经历活动依赖性重塑 [1, 2, 3],特别是树突棘位置、密度和功能的改变 [4],即使在成年人中也是如此。这种个体发生过程在功能上类似于树突结构和位置多样性的进化,因为它们已经适应了一系列功能角色 [5],例如通过突触可塑性实现深度学习 [6, 7]。因此,神经元不是静态结构,而是可以被视为在整个生命周期中不断发育。这一动态过程对神经元级和生物体级功能都有重大影响。例如,在大脑发生剧烈重塑和重建的生物体(如毛毛虫转变为蝴蝶或飞蛾)中,它们学到的一些记忆会保留下来并经受住这一过程 [8]。在其他情况下,记忆可以印刻在从其他组织再生的新大脑上 [9, 10],这凸显了大规模神经结构及其存储信息的可塑性。重塑的这些影响不仅仅是所谓的低等动物的问题,因为再生医学的应用很可能很快就会产生人类患者,他们的部分大脑已被幼稚干细胞的后代所取代,以治疗退行性疾病或脑损伤。
摘要较快的Z/X假说预测,性别连接基因应比常染色体基因更快。但是,跨不同谱系的研究表现出对这种效果的混合支持。到目前为止,大多数分析都集中在旧且差异化的性染色体上,但是对最近获得的新性别染色体的差异知之甚少。在鳞翅目(飞蛾和蝴蝶)中,Z-大体融合很频繁,但是尚未详细探讨Neo-Z染色体的进化动力学。在这里,我们分析了一种具有三个Z染色体的蝴蝶叶leptidea sinapis中的较快效应。我们表明,NEO-Z染色体已逐步获得,导致分化和男性化层。虽然所有Z染色体均显示出更快的Z效应的证据,但对最年轻的Neo-Z染色体(Z3)的基因的选择似乎已被完全完整的,同源的Neo-W染色体阻碍。然而,缺乏W种子学的中等老化的Neo-Z染色体(Z2)显示出更少的进化约束,从而导致了特别快速的进化。因此,我们的结果支持新性别染色体可以构成适应性和差异的暂时热点。潜在的动力学可能与选择性约束,基因表达的演变以及W连锁的配子学的变性有因果关系,这些伴奏逐渐将Z-C-C-C-C-C-Rinked基因暴露于选择。关键字:更快的Z,新性别染色体,性别偏见的基因表达,鳞翅目,选择
•在适当的情况下包括蝙蝠和鸟箱的准备作为新开发项目的条件。还考虑使用“虫酒店”的昆虫制作“房屋”和栖息地。•包括右树和正确位置的树木种植。这也可能在适当的地方包括街道树。试图保护对当地人民和野生动植物很重要的现有成熟树木和树篱。•考虑可能与泡沫有关的新水特征,例如池塘和湿地地区。可能会打开现有涵洞中的流,并抗拒河流的新渠道。•住宅花园地区对于野生动植物可能很重要,在某些情况下,当考虑到特定区域的特征之类的其他考虑因素时,可以保护不适当的发展。•对于主要的住房建议,应制定绿色空间基础设施计划,以确保正确考虑野生动植物友好的绿色空间。这可能包括野生游乐区,儿童可以安全地探索他们当地的自然环境,从而改善他们的身心健康。•街道和其他照明可能会影响到黑暗的天空愿望,以损害人和野生动植物,例如飞蛾和蝙蝠。政策可以通过需要正确的点亮来寻求解决这个问题,以在社区安全需求和较暗的天空之间取得良好的平衡。•邻里计划还可能考虑新绿色空间的未来管理(例如,较少的草切割以使野花和昆虫受益)。
马克·伯恩斯坦(Mark Bernstein)博士回想起他的第一个全球教学经验时,微笑着。在2003年,他进行了为期一个月的印度尼西亚旅行,培训神经外科的居民。每天潮湿的互联网很少,他住在一家小酒店,与许多甲虫和飞蛾共享房间。他被迷住了。从那以后,克里姆比尔脑研究所的神经外科医生兼临床研究员伯恩斯坦(Bernstein)也是大学健康卫生网络手术系的一部分,他也参加了与世界各地的30多个类似的任务。他帮助在医生无法获得与这里相同的资源和基础设施的国家中建立神经外科和姑息治疗的能力。“很多人都会将其视为慈善或慈善事业。我认为这是正义的,”他解释说。2021年4月,多伦多大学的特梅蒂大学医学院因其在神经外科和姑息治疗方面的工作培训医生而获得了迪恩校友人道主义奖。该奖项颁发给了校友,他们的工作超出了临床责任,以帮助当地或全球范围内的公民,慈善和社会事业。在18年的时间里,伯恩斯坦博士将团队带到了卢旺达,埃塞俄比亚,科威特,尼日利亚,加纳,赞比亚和肯尼亚等国家。他经常返回多次继续教书,并将新的和轻轻使用的设备带到他所访问的医院。“我们经常学到的比教学更多。”他说。“这是双向的事情。”
尽管在过去的二十年中,全世界的孕产妇死亡率下降,但低收入国家和高收入国家之间存在很大的差距,其中94%的孕产妇死亡率集中在低收入和中等收入国家。超声是一种普遍的诊断工具,用于监测胎儿的生长和发育。尽管如此,即使对于熟练的超声师来说,以准确的解剖结构获得标准的胎儿超声平面也被证明具有挑战性和时间密集型。因此,为了确定超声图像的常见母胎胎儿,需要自动化的计算机辅助诊断(CAD)系统。已经提出了一种新的基于剩余的瓶颈机制的深度学习体系结构,其中包括82层深度。所提出的体系结构添加了三个残差块,每个块包括两个高速公路路径和一个跳过连接。此外,在每个残留块之前,已经添加了一个尺寸为3×3的卷积层。在训练过程中,使用贝叶斯优化(BO)而不是手动初始化初始化了几个超级参数。深度特征是从平均合并层中提取的,并执行了分类。在分类过程中,计算时间发生了增加;因此,我们提出了一种改进的基于搜索的飞蛾火焰优化算法,以进行最佳特征选择。然后根据所选功能使用神经网络分类器对数据进行分类。实验阶段涉及对超声图像的分析,专门针对胎儿脑和常见的母亲胎儿图像。所提出的方法可实现78.5%和79.4%的脑胎儿平面和常见母体胎儿平面的精度。与几个预训练的神经网和最先进的(SOTA)优化算法的比较显示出提高的精度。