摘要:在本论文中,我们研究了一组四旋翼飞行器的分散控制器的设计。四旋翼飞行器分为领导者和跟随者。领导者由人控制,而追随者则使用去中心化控制器来跟随领导者。追随者是自主的,不知道领导者的行为。本论文的新颖之处在于依靠 WiFi 模块等廉价传感器来估计与相邻四旋翼飞行器的距离。为了设计去中心化控制器,迭代学习与监督学习和模仿学习相结合,经历了几个阶段,包括日志收集、高级模型训练和设计“一个控制器”。然后控制器被集成到跟踪器中,使它们成为自治的。学习方法的主要优点是移动
俄乌战争清楚地表明了小型无人机系统(SUAS)在现代和未来战场上的重要性。随着美国陆军从欧洲冲突中吸取教训,并将自身重点转向为大规模作战行动(LSCO)做准备,各级部队的 SUAS 整合成为首要训练重点。尽管美国陆军率先使用 SUAS 系统,但我们未能像俄罗斯和乌克兰武装部队那样快速地大规模部署和实施该技术。如果不在战术层面获取和训练相关平台,我们就无法实现战略和战役层面对 SUAS 整合的高度重视和需求。一支普通骑兵部队通常拥有一两架“渡鸦”(无人机)和几架“黑黄蜂”(无人机)。这些数量不足,需要补救。
摘要:跨介质飞行器是一种既能在水中潜航,又能在空中飞行的新型概念飞行器。本文基于多旋翼无人机入出水结构模型,设计了一种新型水空多介质跨介质飞行器。基于设计的跨介质飞行器结构模型,利用OpenFOAM开源数值平台进行单介质气动特性分析和多介质跨介质流动分析。采用滑移网格计算单介质空气旋翼和水下螺旋桨的旋转流动特性。为防止网格运动变形引起的数值发散,采用重叠网格法和多相流技术对跨介质飞行器入出水进行数值模拟。通过以上分析,验证了跨介质车辆在不同介质中的流场特性,并得到了跨介质过程中不同入水角度下车体载荷及姿态的变化情况。
2 文献综述.................... ... 6 2.1.1 二冲程发动机 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................11 2.2 控制理论..........................................................................................................................................................................................................................................................................................................................................11 2.2.1 PID 控制算法.......................................................................................................................................................................................................................................11 2.2.2 控制理论.......................................................................................................................................................................................................................................11 2.2.1 PID 控制算法.......................................................................................................................................................................................................................................................11 .. ... . ... ...
摘要 诸如遥控飞行器 (RPV) 之类的新技术使人类不再直接参与战斗成为可能。这种不断发展的动态将如何影响政治暴力的实践和目的?随着机器取代前线的人员,冲突是否会从人类角度变得“无代价”,还是战争逻辑将继续要求人类牺牲?虽然人们已经将大量注意力放在了技术在改变战争方面的作用上,但对于新的作战模式将如何影响使用武力的既定动机,人们知之甚少。我探讨了新冲突模式的政治层面,得出了三个基本结论。首先,在用机器代替人类降低战斗成本的程度上,冲突将变得更加频繁,但不那么确定。其次,与之前的趋势相反,战场自动化有望极大地振兴军事组织的地面部队。最后,遗憾的是,新技术应该会削弱针对平民的抑制。
这项研究是 BrainGate2 临床试验的一部分,重点研究如何将这些神经信号与机器学习相结合,为患有神经损伤或疾病的人提供外部设备控制的新选择。这位参与者于 2016 年开始与斯坦福大学的研究团队合作,几年后,脊髓损伤导致他无法使用手臂或腿。他有兴趣为这项工作做出贡献,并且对飞行特别感兴趣。
图表目录.......................................................................................................................................................................................................................................................................................................................................................................................................................... xvii
图 1 海地国家宫殿。2010 年地震。太子港(海地) ................................................................................................ 9 图 2 2011 年世界贸易中心的 CRASAR 机器人 .............................................................................. 13 图 3 迭代模型 ........................................................................................................................ 18 图 4 搜索和救援 MAV(Eurecat-Ascamm) ............................................................................. 19 图 5 搜索和救援副驾驶概念 ...................................................................................................... 22 图 6 MAV 副驾驶原型 ............................................................................................................. 22 图 7 视觉惯性传感器 [45] ............................................................................................................. 23 图 8 FLIR Tau2 LWIR 传感器 [46] ................................................................................................ 23 图 9 Pointgrey Firefly FMVU-03MTM-CS ............................................................................................. 24 图 10 概念参考软件架构 ............................................................................................................. 27 图 11 ROS 节点的概念部署图................................................ 28 图 12 保证定位策略 .............................................................................................. 30 图 13 可重构导航解决方案架构 ................................................
摘要 本文旨在设计和研究无人驾驶飞行器 (UAV) 六旋翼飞行器在三维空间中的动态模型。基于牛顿-欧拉法确定了导出的运动方程。这些方程具有非线性和耦合性。此外,为了使六旋翼飞行器具有真实的运动,模型中还嵌入了气动效应和扰动。六旋翼飞行器是一种垂直起降 (VTOL) 飞行器,具有悬停能力和灵活性,因此与固定翼飞行器相比毫不逊色。尽管如此,它的动态模型很复杂,被描述为不稳定的,并且不能在不扭转其轴的情况下进行平移运动。除了控制和仿真设计模块外,还通过 LabVIEW 软件建立了结论性数学模型。因此,对多个实验状态的稳定性进行了分析,以便提前展示用于平衡和轨迹跟踪的适当控制器。关键词:——无人机,六旋翼飞行器动力学,非线性控制,耦合和欠驱动模型,牛顿-欧拉方法。
未来将加速变化、技术进步和潜在威胁,而这些是十年前从未想象过的。过去的许多教训可能不再适用于截然不同的未来条件。然而,过去的经验为我们提供了基础,让我们能够理性地实现远见卓识。希望这些尝试能够落地,揭示出应对未来挑战的可行方法。军事远见者必须有开放的心态,探索运用军事力量的新方法。美国不能再简单地通过对现有军事系统和战略进行迟来的升级来适应不断变化的环境。为了保持世界最强大的超级大国地位,美国领导人必须公开积极地追求运营和组织创新。