InstantEye Mk-3 GEN4-D1 sUAS 是高性能、低成本、自主飞行系统系列的一部分,可由单个操作员手动发射/回收。GEN4-D1 利用经过实战检验的 GEN3 和 GEN4 系统的易用性和生存能力,结合加密的软件定义无线电,提供几乎无声、小型、按需、本地(约 3000 米)态势感知。作为士兵的最终用户设备,InstantEye Mk-3 GEN4-D1 可增强部队保护并降低其范围内每个人的操作风险。该飞机集成了万向架电光 (EO) 和长波红外 (LWIR) 摄像头。飞行时,该飞机的旋翼跨度较小,非常适合用作进入机器人,为没有 GPS 的空间提供第一双眼睛。该系统通常具有大约 30 分钟的续航时间,受天气条件(尤其是风、热和湿度)和使用的任何有效载荷的影响。该系统能够在恶劣天气下飞行,包括风速高达 35 英里/小时、大雨/大雪、海拔高达 12,000 英尺,温度在 -10°F 至 120°F 之间。该系统的自动驾驶仪、飞行控制和人机界面源自经过实战验证的 InstantEye Mk-2 GEN3 和 Mk-2 GEN4 系统。这些早期系统有数千小时的飞行记录,拥有陆军特种作战航空司令部的适航许可,并被陆军总部授权部署和使用。InstantEye Mk-3 GEN4-D1 (MIL) 系统由以下元素组成(图 1): • 飞机,InstantEye Mk-3 GEN4-D1 (MIL) – 数量 2 • 双手控制器 (GCS-D) D1 (MIL) – 数量 1 • 加固地面控制系统 (GCS) 显示器 (8J) – 数量 1 • 带 USB 主机适配器的 GCS 电缆 (8J) – 数量 1 • 运输(硬)箱,InstantEye Mk-3 GEN4-D1 系统 – 数量 1 • 软包,InstantEye Mk-3 GEN4-D1* – 数量 1 • 电池,1.3 Ah- 数量 2 /5.7V – 数量 2 • 电池充电器,InstantEye Mk-3 GEN4-D1 – 数量 1 • BA-5590 和 BB-2590 的充电器接口电缆, 4 针 – 数量 1 • 备件套件,InstantEye Mk-3 GEN4-D1 – 数量 1 • InstantEye Mk-3 GEN4-D1 sUAS 技术手册 (MIL) – 数量 1
致谢 这项工作是我过去几年在德国不来梅空中客车公司数字模型集成团队工作时所做研究的成果。我可能认为自己很幸运,因为即使经过多年忙碌、紧张和具有挑战性的模型主题专业和研究工作,数字模型仍然像第一天一样令人兴奋,而复杂性方法更是令人兴奋和拓展思维的事业。我特别要感谢我的博士导师 Prof. Dr.-Ing。航空工程研究所的 Dieter Schmitt 多年来对我工作的支持和信心。我非常感谢他给予我以一种相当不寻常的方式探索模型领域的自由,也非常感谢他将一项受到工业环境强烈影响的工作转化为科学论文的严谨态度。我要感谢 Prof. Dr.-Ing。轻型结构研究所的 Horst Baier 是第一位审稿人,他为我选择了合适的论文标题。然后,我要感谢产品开发研究所的 Prof. Dr. Kristina Shea,她是第三位审稿人,她提供了详细的反馈和改进建议。此外,我还要感谢 Prof. Dr.-Ing.飞行系统动力学研究所的 Florian Holzapfel,他接受了考试委员会主席的职位,并顺利组织了论文过程。我感谢不来梅的众多同事,他们抽出时间从不同学科的角度提供宝贵的见解,他们为我提供数据和背景材料(特别是在我加入公司之前很久就开展的工程模拟活动)并在我的工作不同阶段提供反馈和建议。特别值得一提的是,当时我的上司 Ralf Garbade、Thomas Stockhinger 和 Marc-Niels Jaeschke 允许我自由安排我的职业和研究,以我认为最方便的方式。我特别感谢 Dieter Weinhauer,他是一位经验丰富、现已退休的飞机开发工程师和经理,从论文开始成型时就一直支持我。我特别感谢他宝贵而详细的反馈以及对我工作各个方面的长期讨论。他极大地增强了我对数字模型的整体理解,包括它在飞机开发中的地位及其潜力。我很早就决定用英语写这篇论文。最后,我要感谢我的家人,感谢他们在这些充满挑战却收获颇丰的岁月中给予我精神上的持续支持。翻译都是我自己做的,尽管我尽了最大的努力来正确表达我的想法,但还是不能排除有错误没有被发现的可能性。如果是这样,我为此道歉,并希望文本仍然可读且可理解。Stuhr,2008 年 5 月 Walter Richard Dolezal
致谢 这项工作是我过去几年在德国不来梅空中客车公司数字模型集成团队工作期间所做研究的成果。我可能认为自己很幸运,因为即使经过多年忙碌、紧张和具有挑战性的模型主题专业和研究工作,数字模型仍然像第一天一样令人兴奋,而复杂性方法更是令人兴奋和开拓思维的事业。我特别要感谢我的博士导师、航空工程研究所的 Prof. Dr.-Ing. Dieter Schmitt,感谢他多年来对我工作的支持和信任。我非常感谢他给予我以一种相当不寻常的方式探索模型领域的自由,也感谢他将一项深受工业环境影响的工作转化为科学论文的严谨态度。我要感谢轻质结构研究所的 Prof. Dr.-Ing. Horst Baier 作为第一位审阅者,并感谢他为我选择合适的论文标题提供建议。然后,我要感谢产品开发研究所的 Kristina Shea 教授担任第三位审阅人,并感谢她提供的详细反馈和改进建议。此外,我还要感谢飞行系统动力学研究所的 Florian Holzapfel 教授担任考试委员会主席,并顺利组织处理论文过程。我感谢不来梅的众多同事,他们抽出时间从不同学科的角度提供宝贵见解,为我提供数据和背景材料支持——特别是在我加入公司之前很久就开展的工程模型活动——并在我工作的不同阶段提供反馈和建议。特别值得一提的是,我当时的上司 Ralf Garbade、Thomas Stockhinger 和 Marc-Niels Jaeschke 允许我自由安排我的专业工作和研究,以我认为最方便的方式。我特别感谢 Dieter Weinhauer,他是一位经验丰富、现已退休的飞机开发工程师和经理,从论文开始成型时,他就一直支持我。我特别感谢他提供的宝贵而详细的反馈,以及对我工作各个方面的长期讨论。他极大地增强了我对数字模型的整体理解,包括它在飞机开发中的地位及其潜力。最后但并非最不重要的是,我要感谢我的家人,他们在这些充满挑战但收获颇丰的岁月中一直给予我精神上的支持。我很早就决定用英文写这篇论文。翻译是我自己做的,尽管我尽了最大的努力来正确表达我的想法,但我不能排除错误被忽视的可能性。如果是这样,我为此道歉,并希望文本仍然是可读和可理解的。Stuhr,2008 年 5 月 Walter Richard Dolezal
I.引言案件越来越被公认为是对具有自主功能的复杂系统建立信任的一种方式[1]。保证案例是一种全面,可辩护和有效的理由,即系统将按照特定任务和操作环境的目的运作。具有自主能力的系统的这种理由通常基于各种概率定量[2]。由于这些系统运行的环境条件的动态性质以及自主系统本身的变化性质,这些概率量化在设计时间内不能简单地估算一次。相反,需要在系统操作期间不断评估它们,以确保保证案例的合理性有效。我们指的是将静态元素和动态元素作为动态保证情况(DAC)结合的保证案例。这种具有自主功能的复杂系统通常使用地面控制软件(GCS)组件部署,以实现远程操作。该系统是由单个单元还是单位舰队组成,已部署的分布式或远程环境中,GCS是对部署系统行为的窗口。它从系统接收遥测,向系统发出命令,并提供各种功能来可视化系统性能。我们提出了一个动态保证框架,其中GC是自主系统与其DAC之间的中继。GCS本身可用于使用传入遥测来跟踪单位特异性和系统范围的概率定量。我们将这些量化嵌入了整个DAC,作为可以由外部来源更新的变量。我们使用GC定期更新这些变量,这使我们能够不断评估正式定义的保证案例合同。我们在NASA AMES项目中展示了我们动态的保证框架,该框架旨在开发能够自主绘制其环境的流浪者队伍。流浪者合作工作,每个人都会为环境的不同部分收集数据。每个漫游者运行相同的核心飞行系统(CFS)[3]应用程序。Troupe使用Openc3 Cosmos [4]作为接地系统,并提倡[5]捕获DAC系统。我们使用该方法将保证案例与正式验证[6]与正式的运行时监控工具联系起来。特别是,我们使用FRET工具[7]来形式化倡导者中捕获的要求。然后,我们利用OGMA [8,9]和Copilot [10]工具及其与FRET的集成的功能来生成CFS监视器,并获得更新系统DAC所需的系统信息。我们展示了如何使用其红宝石脚本编辑器在宇宙中捕获漫游车特异性和系统范围的量化,并将其传递到倡导者中建模的DAC中。然后,我们展示了如何将这些传入变量嵌入DAC的不同部分以及如何观察到其更新的效果。