➊ 准备一个透明的杯子,可以通过它观察杯子里面的情况。 ➋ 将洗洁精切成可以用杯子覆盖的大小。 ➌ 将一块洗碗布放在盘子上,并在洗碗布上滴 10 滴速干胶。 ➍ 将护手霜涂到食指上后,小心地将食指按在杯子的内壁上。 ➎ 盖上杯子并等待约 5 分钟。
摘要:香蕉是重要的主粮作物,也是约 150 个热带和亚热带国家小农户的收入来源。香蕉黄单胞菌枯萎病 (BXW)、血病和莫科病等几种细菌性疾病对香蕉生产造成了重大影响。在同一块田地中同时存在细菌病原体和其他几种病原体和害虫的地区,香蕉产量差距很大。据报道,由 Xanthomonas campestris pv. musacearum 引起的 BXW 病是东非最具破坏性的香蕉病。这种疾病影响该地区种植的所有香蕉品种。只有野生型二倍体香蕉 Musa balbisiana 对 BXW 病具有抗性。开发抗病香蕉品种是控制疾病最有效的策略之一。基于 CRISPR/Cas 的基因编辑技术的最新进展可以加速香蕉改良。通过敲除致病易感性 (S) 基因或激活植物防御基因的表达,利用 CRISPR/Cas9 介导的基因编辑技术来产生对细菌病原体的抗性,已取得了一些进展。本文概述了基因编辑在控制青枯病方面的应用的最新进展和前景。
* 通讯作者。电子邮件地址:andrea.serna@utp.edu.co(JA Serna-Jiménez)、q12lulaf@uco.es(F. Luna-Lama)、alvaro.caballero@uco.es(A. Caballero)、iq2masam@uco.es(MA Martín)、iq1chpea@uco.es(AF Chica)、a92siloj@uco.es(JA Siles)。
Aubry, S. (2019)。食品和农业植物遗传资源数字序列信息的未来。植物科学前沿,10,1046。https://doi.org/10.3389/fpls.2019.01046 Baurens, F.-C.、Martin, G.、Hervouet, C.、Salmon, F.、Yohomé, D.、Ricci, S.、Rouard, M.、Habas, R.、Lemainque, A.、Yahiaoui, N. 和 D'Hont, A. (2019)。重组和大型结构变异塑造了种间食用香蕉基因组。分子生物学与进化,36,97–111。 https://doi.org/10.1093/molbev/msy199 Carpentier, SC、Dens, K.、den Houwe, IV、Swennen, R. 和 Panis, B. (2007)。冻干是一种在蛋白质提取进行 2DE 分析之前储存和运输组织的实用方法吗?蛋白质组学,7,64-69。 https://doi.org/10.1002/pmic.200700529 Cenci, A.、Hueber, Y.、Zorrilla-Fontanesi, Y.、van Wesemael, J.、Kissel, E.、Gislard, M.、Sardos, J.、Swennen, R.、Roux, N.、Carpentier, SC 和 Rouard, M. (2019)。古多倍体和异源多倍体对香蕉基因表达的影响。 BMC Genomics , 20 , 244, https://doi. org/10.1186/s12864-019-5618-0 Cenci, A., Sardos, J., Hueber, Y., Martin, G., Breton, C., Roux, N., Swennen, R., Carpentier, SC, & Rouard, M. (2020). 揭秘 ABB 异源三倍体香蕉中基因组间重组的复杂故事。《植物学年鉴》, 127 , 7–20。 https://doi.org/10.1093/aob/ mcaa032 D'Hont, A.、Denoeud, F.、Aury, J.-M.、Baaurens, F.-C.、Carreel, F.、Garsmeur, O.、Noel, B.、Bocs, S.、Droc, G.、Rouard, M.、Da Silva, C.、Jabbari, K.、Cardi, C.、Poulain, J.、Souquet, M.、Labadie, K.、Jourda, C.、Lengellé, J.、Rodier-Goud, M.、……Wincker, P. (2012)。香蕉(Musa acuminata)基因组和单子叶植物的进化。 Nature , 488 , 213. https://doi.org/10.1038/nature11241 Davey, JW, Davey, JL, Blaxter, ML, & Blaxter, MW (2010). RADSeq:下一代群体遗传学。Briefingings in Functional Genomics , 9 , 416–423. https://doi.org/10.1093/bfgp/elq031 Droc, G.、Lariviere, D.、Guignon, V.、Yahiaoui, N.、This, D.、Garsmeur, O.、Dereeper, A.、Hamelin, C.、Argout, X.、Dufayard, J.-F.、Lengelle, J.、Baaurens, F.-C., Cenci, A.、Pitollat, B.、D'Hont, A.、Ruiz, M.、Rouard, M.,
摘要。本文在现代经济的数字化背景下专门考虑金融体系的特征。作者引用了数字化转型科学知识方法的关键方面。考虑了定义金融体系中数字经济的方法论方法。因此,作为研究的理论部分的材料,收集,系统化,数据和统计参考书是为Bashkortostan共和国联邦州统计局领土机构的统计参考书,使用了共和国政府的报告,分析了材料以确定Moscow Management Skolkovo的数字俄罗斯索引和其他人。许多开放源信息。进行了Bashkortostan共和国数字不平等的定量和定性指标的收集和分析,共和国税收系统数字化指标的统计数据被视为
香蕉(Musa spp。)是全球重要的水果作物。真菌fusarium oxysporum f。 sp。cubense(foc)导致镰刀菌,被广泛认为是最具破坏性的植物疾病之一。fusarium Wilt先前已经破坏了全球香蕉的生产,并继续这样做。此外,由于目前使用高密度的香蕉种植园,具有理想植物建筑(IPA)的理想香蕉品种具有较高的耐药性,最佳的光合作用和有效的吸水性。这些特性可能有助于增加香蕉的产量。基因工程对于大多数品种的不育而具有焦点耐药性和理想植物建筑的香蕉品种的开发很有用。然而,基因工程带来的持续免疫反应总是伴随着降低的屈服。为了解决这个问题,我们应该对MUSA基因组进行功能遗传研究,并结合基因组编辑实验,以揭示免疫反应和香蕉中植物结构形成的分子机制。对与焦点抗性和理想结构相关的基因的进一步探索可能会导致具有理想结构和病原体超级耐药性的香蕉品种的发展。这种品种将帮助香蕉在全球范围内保持主食。
1. Garcia-Bastidas, F. 等人。哥伦比亚首次报道由 Fusarium odoratissimum 引起的卡文迪什香蕉枯萎病热带小种 4。APS 出版物。(2019 年)。259 https://doi.org/10.1094/PDIS-09-19-1922-PDN 260 2. Varma, V. 和 Bebber, DP。气候变化对全球香蕉产量的影响。Nat. 261 Clim. Change 9 , 752-757 (2019)。262 3. Simmonds, NW 和 Shepherd, K。栽培香蕉的分类和起源。J. 263 Linn. Soc. Bot。55 , 302-312 (1955)。 264 4. Gold, CS、Kiggundu, A.、Abera, AMK 和 Karamura, D. 乌干达 Musa 品种的多样性、分布和农民偏好。Exp. Agric. 38, 39-50 (2002)。 266 5. Gambart, C. 等人。农业生态集约化战略对农场绩效的影响和机遇:乌干达中部和西南部香蕉种植系统案例研究。食品系统可持续发展前沿。23, 87 (2020)。 269 6. Wielemaker, F. 引自:Kema, GHJ 和 Drenth, A. (eds.)。实现香蕉的可持续种植。第 1 卷:栽培技术。伯利·多德农业科学系列。 271 Burleigh Dodds Science Publishing,英国剑桥(2018 年)。272 7. Ordonez,N. 等人。最糟糕的情况是香蕉和巴拿马病——当植物和病原体克隆相遇时。PLoS Pathog。11,e1005197(2015 年)。274 8. Ndayihanzamaso,P. 等人。开发用于检测东非和中非尖镰孢菌古巴专化种谱系 VI 菌株的多重 PCR 检测方法。欧洲植物病理学杂志(2020 年)。277 9. Soluri,J。口味的解释:出口香蕉、大众市场和巴拿马病。环境。278 Hist。7,386-410(2002 年)。 279 10. Stover, RH 疾病管理策略和香蕉产业的生存。植物病理学年鉴。24 ,83-91 (1986)。281 11. Bubici, G.、Kaushal, M.、Prigigallo, MI、Gómez-Lama Cabanás, C. 和 Mercado-Blanco, J. 香蕉枯萎病的生物防治剂。微生物学前沿。10 ,616 (2019)。283 12. Kaushal, M.、Mahuku, G. 和 Swennen, R. 枯萎病感染田中有症状和无症状香蕉相关的根部定植微生物组的宏基因组学见解。植物。9 ,263 (2020)。 286 13. Mollot, G.、Tixier, P.、Lescourret, F.、Quilici, S. 和 Duyck, PF 新的主要资源增加了对香蕉农业生态系统中害虫的捕食。农业与昆虫学。14 , 317-323 288 (2012)。 289 14. Djigal, D. 等人。覆盖作物改变香蕉农业生态系统中土壤线虫食物网。土壤生物化学。48 , 142-150 (2012)。 290 15. Karangwa, P. 等人。东非和中非尖镰孢菌古巴专化的遗传多样性。植物疾病。102 , 552-560 (2018)。 293 16. Jassogne, L. 等人。咖啡/香蕉间作为乌干达、卢旺达和布隆迪的小农咖啡 294 农民提供了机会。在 G. Blomme、P. Van Asten 和 B. Vanlauwe 中,撒哈拉以南非洲湿润高地的香蕉系统(第 144-149 页)。国际农业和生物科学中心。沃灵福德:CABI。(2013 年)。 17. Norgrove, L. 和 Hauser S. 喀麦隆南部农林业系统中不同树木密度和“刀耕火种”与“刀耕火种”管理下芭蕉的产量。大田作物研究。78,185-195(2002 年)。 18. Zhu, Y. 等人。水稻遗传多样性和疾病控制。自然 406,718-722(2000 年)。 19. Deltour, P. 等人。农林复合系统对香蕉枯萎病的抑制作用:土壤特性和植物群落的影响。农业生态系统环境。239,303 173-181(2017 年)。304
土地准备 在种植香蕉之前,先种植绿肥作物,如大叶茶、豇豆等,然后将其埋入土壤中。土地可以耕 2-4 次并平整。使用翻耕机或耙子打碎土块,使土壤倾斜。在土壤准备过程中,添加基础剂量的 FYM 并彻底混入土壤中。通常需要 45 厘米 x 45 厘米 x 45 厘米的坑。坑内应填入表土,其中混合了 10 公斤 FYM(充分分解)、250 克印度楝饼和 20 克康博福隆。将准备好的坑放在太阳辐射下有助于杀死有害昆虫,有效对抗土壤传播的疾病并有助于通气。在 PH 值高于 8 的盐碱土中,坑混合物需要经过改性以加入有机物。添加有机物有助于降低盐度,而添加紫砂石可改善孔隙度和通气性。沟栽是坑栽的替代方法。根据土壤层,可以选择适当的方法以及种植植物的间距和深度。
用叶子叶子的移动设施的建造可能还记得一个早期幼儿园的工艺室中的一个或另一个。尽管如此,在该实验的帮助下,您可以检查某些植物物种的气孔的位置。此外,对测试原则的解释已经引发了生物学学生的有趣讨论。
香蕉中的微量营养素生物结构化和抗病性是公共部门研究的独特倡议a。传统繁殖很难改善植被繁殖的遗传复杂作物。需要通过几种方式来解决食品和营养安全,其中之一可能是水果的生物预防。在世界的热带和亚热带地区生长,香蕉和车前草是最重要的农作物之一。然而,与其他主要作物相比,它们的进步最少。大多数香蕉生产都是基于野生收藏品的品种。香蕉的遗传体系很复杂且难以通过杂交和遗传重组产生变异性。诸如不同的基因组构成,杂合性,多倍体和parthenocarpic水果的发展等因素使传统技术在香蕉中的应用更加困难。重要的是要提及传统的育种计划不易于诸如增强VIT之类的生物性。a和铁和对害虫的抗性的发展。这种复杂性需要开发创新的方法来支持传统的繁殖计划,而有希望的是开发生物化的香蕉。香蕉的遗传改善被认为具有引入多个有用特征的巨大潜力,例如抗病性和增强营养价值,因为通过使用新技术和方法,可以在精英品种中相对较快地引入这些特征而不会损害其良好的本地特征。在影响香蕉的真菌疾病中,黑人西加托卡和镰刀菌是最威胁性的。除此之外,细菌枯萎病和病毒疾病(例如香蕉束顶部,香蕉条纹和香蕉片摩西摩西式影响香蕉产生的产量都显着。种植了一些重要的印度品种(例如Rasthali)的培养。主要的公共卫生问题之一,在印度人口中,艾滋病毒/艾滋病和疟疾旁边排名是微量营养素的缺陷。维生素A缺乏会导致失明和夜间失明,而铁缺乏会导致贫血,免疫能力降低,从而导致发病率和死亡率增加,这通常是由于感染性疾病严重程度增加而导致的延迟延迟。可以设计香蕉以帮助克服营养不足。b。生物强化是一种易于实施的解决方案,可以解决人口水平的营养不良。一种重要的科学驱动的策略,它已通过一种被称为生物风化的方法来增强全球常见食品作物中的微量营养素含量,以增强其自然形式的微量营养素的含量。这涉及选择或开发大量特定微量营养素的主食作物品种。此策略有可能对减少>产生非常重大的影响