○ 当比赛过程中发生超控时,B 赛道上的比赛将结束。 (规定3次运行中的1次将被视为已消耗。) ○ 对于A路线,即使中途发生超越,只要超越前后有清除的内容,则将被视为有效。 (例如,即使在1-1避障过程中发生超越,如果在之后的同一运行中清除了1-2障碍物识别,则1-2中获得的分数将有效。 另外,如果1-1避障成功完成,并且在下一个交叉路口的1-2障碍物识别之前发生超越,则避障的10分将成为该运行的得分。) ● 我们正在努力通过提前验证来减少技术问题,但请谅解可能会出现秘书处未预料到的问题。 ● 如果您对比赛内容有任何疑问,请在您参加的Slack频道中提问,以确保所有参与者的信息公平。请注意,我们无法回答有关比赛内容以外的任何问题。
实施高效且可持续的乘车系统需要制定良好的战略和伴随的公共政策。在基于严厉的停止场景中观察到最高的潜力。尽管这种情况在政治上可能不可行,但它显示了可以通过乘车来实现多少流量和降噪的上限。可以通过基于停止的服务设计观察到少量降低噪音,尤其是在居民区。门到门服务甚至可能会增加居民区的噪音。这项研究发表在运输研究部分,可访问开放式:https://doi.org/10.1016/j.trd.2020.102673
• 如何将 Digifed 在照明、可靠性测试和自动驾驶汽车方面的能力用作项目的一部分,同时利用 DigiFed 合作伙伴来最大化您的提案分数:卓越、影响力、实施质量(45 分钟)
要允许复制或重新出版,请联系美国航空与宇航学院1801 Alexander Bell Drive,Suite 500,Reston,VA,20191–4344
虽然行为克隆最近已成为自主驾驶的非常成功的范式,但Humans很少学会通过单独的模仿或行为克隆来执行复杂的任务,例如驱动或行为。相比之下,人类的学习通常涉及在整个交互式学习过程中的其他详细指导,即通常通过语言的反馈提供详细的信息,以详细信息,以进行审判的哪一部分进行,不正确或次要地进行。以这种观察的启发,我们引入了一个有效的基于反馈的框架,用于改善基于行为克隆的传感驱动剂培训。我们的关键见解是利用大语模型(LLM)的重新进步,以提供有关驾驶预测失败背后的理由的纠正良好的反馈。更重要的是,我们引入的网络体系结构是有效的,是第一个基于LLM的驾驶模型的第一个感觉运动端到端培训和评估。最终的代理在Nuscenes上的开环评估中实现了最新的性能,在准确性和碰撞率上的表现优于先前的最新时间超过8.1%和57.1%。在卡拉(Carla)中,我们的基于相机的代理在以前的基于激光雷达的AP摄入率上提高了16.6%的驾驶得分。
应对这些挑战,我们提出了驾驶概念,以此作为实现良好驾驶行为的框架。驾驶理由评估驾驶行为在道路使用者之间存在的相互期望之间的一致性中。利用现有文献,我们首先要区分(i)经验期望(即,反映了“遵循某种行为的信念”,借鉴了过去的经验)(Bicchieri,2006年); (ii)规范性期望(即,基于社会同意的原则,反映了“应该遵循某种行为的信念”)(Bicchieri,2006年)。,由于社会期望自然会随着时间的流逝而自然变化,因此我们引入了第三种期望,促进期望,表示可以展示的行为,以促进运输生态系统的持续改进。我们将驾驶员置于社会规范期望的空间内,并指出现有的与一些经验和促进期望的重叠,这受到技术和物理上可行性的限制。
摘要我们提出了一种大型语言模型(LLM)的ChatScene-利用LLM的能力来为自动驾驶汽车的安全至关重要方案。给定的非结构化语言指令,代理首先使用LLMS生成文本描述的流量方案。这些SCE-NARIO描述随后被分解为几个子描述,以获取指定的细节,例如行为和车辆的位置。代理然后将文本描述的子筛选性转换为特定于域的语言,然后在模拟器中生成用于预测和控制的实际代码,从而促进了Carla Simulation Envimonment中的不同和复杂场景的创建。我们代理的关键部分是一个全面的知识检索组件,它通过训练包含情景描述和代码对的知识数据库来有效地将特定的文本描述转化为相应的特定领域代码段。广泛的实验结果强调了Chatscene在提高自动驾驶汽车安全性方面的功效。对于Intance,ChatScene产生的方案显示,与最先进的基线相比,在针对不同的基于强化的基于学习的自我车辆进行测试时,碰撞率增加了15%。此外,我们表明,通过使用我们生成的安全 - 关键方案来微调不同的基于RL的自主驾驶模型,它们可以降低碰撞率9%,超过Cur-Current Sota方法。代码可在https://github.com/javyduck/chatscene上找到。ChatScene有效地弥合了交通情况的文本描述与实际CARLA模拟之间的差距,从而提供了一种统一的方式,以方便地生成安全至关重要的方案,以进行安全测试和改进AVS。
作为一种广泛使用且经过验证的技术,触摸屏正在进入民用飞机的驾驶舱。作为 ACROSS(减少压力和工作量的先进驾驶舱)项目的一部分,NLR 设计了一种具有触摸交互功能的创新驾驶舱显示器,用于战术飞行控制;改变飞机的(垂直)速度、航向和/或高度。在当前的驾驶舱配置中,此自动驾驶 (AP) 功能的控件在空间上与它们调整的参数的可视化分离,从而引入了身体和精神工作量的方面。本文介绍了消除这种物理间隙并通过直接操作 (DM) 创建直观交互的人机界面 (HMI) 设计过程。DM 的特点是直接在图形对象可视化的位置对其进行操作,其方式至少与操作物理对象大致相对应。它具有高度直观性,不易出错的潜力。因此,假设 HMI 设计可以减少飞行员的工作量并同时提高态势感知 (SA)。使用 NLR 的飞行模拟器对该概念进行评估。实验结果表明,战术飞行控制设计概念具有巨大潜力,但交互实现需要进一步改进,因为它增加了飞行员的工作量,尤其是在湍流条件下。
