表1。In- and exclusion criteria .................................................................................................... 8 Table 2.Data charting form ............................................................................................................. 9 Table 3.研究中使用的结果和措施的类型................................................................................................................................................................................................................................................................................................................................................................................................. 14表4。Factors that were reported in studies as affecting implementation and adoption of exoskeletons ................................................................................................................................. 23 Table 5.Reported limitations from authors' perspectives ............................................................... 24
骨髓微环境在广泛的调节控制下包含各种各样的细胞类型,并提供了一种新颖而复杂的骨调节机制。巨核细胞(MK)是一种这样的细胞类型,由于其对造血,成骨细胞生成和破骨质外生的影响,它可能充当骨髓微环境的主要调节剂。虽然其中几个过程是通过MK分泌因素诱导/抑制的,但其他过程主要受直接细胞接触的调节。值得注意的是,已经发现MKS对这些不同细胞种群发挥的调节作用随老化和疾病状态而变化。总体而言,MK是骨髓的关键组成部分,在检查骨骼微环境的调节时应考虑。对MK在这些生理过程中的作用的增强理解可能会提供对新型疗法的见解,这些疗法可用于针对造血和骨骼疾病中重要的特定途径。
苏格里希大学苏黎世大学医院胃肠病学和肝病学系瑞士Lausanne,E胃肠病学,内脏手术和医学诊所,伯恩大学医院,伯恩大学医院,伯恩大学,伯恩大学,瑞士伯恩大学,瑞士炎症性肠道疾病中心胃肠病学中心,Hôpitalde la Tour,瑞士大学医学院Hôpitalde la Tour,瑞士大学医学院,Genitzer of Genitzer hHôpitalde la Tour,Genitzer hhortery genirlanty genter s瑞士大学,Genitzer h Houtherland Hevilland Hevilland genev n switsirlandy Genter h switsirly Switsilland genter genter genter s瑞士。蒙特利尔,加拿大魁北克蒙特利尔,我克拉鲁尼斯,胃肠道和肝病大学中心,巴塞尔,瑞士J瑞士瑞士伯尔尼,瑞士弗里博格大学
摘要在过去的二十年中,生物正交化学对各种与化学相关的领域进行了深远的影响,包括化学生物学和药物递送。这种变革性的进步源于涉及化学家和生物学家的协作努力,强调了跨学科研究的重要性。在此帐户中,我们在拉德布德大学的分子与材料研究所内的生物正交化学发展。化学因素从狭窄的炔烃和烷烃跨越了药物释放和生物缀合策略,反映了生物正交化学提供的广泛范围。通过反思起源于拉德布德大学的化学反应,该帐户强调团队合作是在推动生物方性化学方面取得重大进展的重要性。1引言2提供BCN作为化学生物学和3的强大生物串管工具,以便于可用的点击释放式转换 - 环状烯4给出分子指南5下一代生物缀合策略:动态点击化学6结论6结论
骨骼肌是一种高度的塑料组织,可以改变其代谢和收缩的特征,以及响应于运动和其他条件的再生潜力。在调节骨骼肌可塑性时已经研究了多个信号传导因素,包括代谢物,激酶,受体和转录因子。最近,雌激素相关的受体(ERR)已成为控制骨骼肌稳态的关键转录中心。ERRα和ERRγ-肌肉中的两个高度表达的ERR子类型对各种细胞外提示做出反应,例如运动,缺氧,禁食和饮食因素,进而调节骨骼肌中基因表达。另一方面,糖尿病和肌肉营养不良等疾病抑制骨骼肌中错误的表达,可能导致疾病进展。我们突出了骨骼肌中错误的关键功能,包括纤维类型的调节,线粒体代谢,血管化和再生。我们还描述了如何在骨骼肌中调节错误以及它们与重要肌肉调节剂的相互作用(例如AMPK和PGC)。 最后,我们确定了对骨骼肌中错误信号传导的理解的关键差距,并建议将来的调查领域推进错误,作为促进肌肉疾病疗法功能的潜在目标。AMPK和PGC)。最后,我们确定了对骨骼肌中错误信号传导的理解的关键差距,并建议将来的调查领域推进错误,作为促进肌肉疾病疗法功能的潜在目标。
引入骨骼的再生取决于各种因素,包括骨骼干/祖细胞(SSPC)及其与骨膜和骨髓小裂细胞中其他细胞种群的相互作用。裂缝会损害骨骼和周围的组织,导致出血,血肿形成以及hema-拓扑细胞流向骨折部位。这些事件导致SSPC和内皮细胞(EC)的扩展。我们实验室和其他小组的先前研究表明,骨膜是导致愈合的主要原因(1-3)。最近由Liu等人发表的遗传谱系追踪研究报道了支持骨膜作为骨折愈合的主要促进者。(4)。控制组织修复的关键事件是SSPC是否发生增殖或分化。在骨折愈合的早期阶段,自分泌和旁分泌信号将SSPC的命运直接降低对软骨和成骨谱系的承诺。然而,控制细胞异质愈伤组织中SSPC激活的分子途径和细胞对细胞信号传导机制仍然鲜为人知。Notch信号传导是一种保守的途径,在发育,稳态和组织再生中具有作用(5)。该途径在维持祖细胞池和控制各种细胞类型的成熟谱系中的分化中起着重要作用(6)。Notch信号传导的作用是分歧和温度控制的,取决于细胞谱系成熟的特定组织和阶段(5,7)。但是,Notch也Notch信号传导取决于Notch配体(JAGGED 1和2 [JAG1和-2]以及DELTA样配体1、3和4 [DLL1,-3和-4])与Notch受体(Notch1-4)(Notch1-4)(5,6)。在接收配体结合后,受体的构象变化促进了Notch受体细胞内结构域(NICD)的γ-分泌酶切割。然后,NICD与重组信号结合蛋白结合,用于免疫球蛋白κJ区(RBPJκ)和类似策划的蛋白,诱导基因转构。此信号序列通常称为典型的Notch信号传导。
骨骼疾病对社会造成了重大负担。用于减轻此类疾病的临床和组织工程疗法经常导致并发症,并且有效不足。研究已从基于间充质干细胞(MSC)的常规疗法转变为衍生自MSC的外泌体。外泌体是内源性DNA,RNA,蛋白质和脂质的天然纳米载体,具有低免疫清除率和良好的屏障渗透速率,并允许靶向治疗药物的递送。MSC衍生的外泌体(MSC - 外观)具有MSC和外泌体的特征,因此它们可以具有免疫抑制和组织再生作用。尽管我们对MSC诊断的了解有所进步,但它们的调节机制和功能尚不清楚。在这里,我们回顾了MSC诊断对骨骼疾病的治疗潜力。
截肢是指因意外、糖尿病、癌症、肿瘤、骨髓炎、血管疾病等原因而失去全部或部分肢体。截肢影响着全世界数百万人的运动功能和生活质量。此外,患有这种残疾的人不仅行动不便,而且心理上也受到影响。本研究旨在研究人工智能外骨骼对截肢康复的影响,外骨骼是截肢者的希望之源,并比较所使用的人工智能技术。为此,我们回顾了文献,并对过去 10 年关于脑机接口、机器学习、深度学习、人工神经网络等人工智能技术对截肢患者康复的影响的研究进行了定性荟萃分析。定性荟萃分析的结果显示,截肢患者康复中最常用的人工智能技术是脑机接口,所有基于人工智能的外骨骼都对康复产生了积极的影响,并且得益于这些人工智能技术,截肢患者的活动限制得到了减少。关键词:截肢康复、人工智能、脑机接口、深度学习、外骨骼。
退化性和老年肌肉骨骼系统的功能和结构变化包括骨关节炎,骨质疏松症,椎间盘退化和肌肉减少症。在全球衰老的背景下,这些疾病的发生率正在迅速增加。尽管时间和资源对其机制进行了大量投资,但这些疾病的病因和发病机理尚未完全了解。因此,这些疾病的当前治疗方法只能集中于晚期表现而不是原因。我们很高兴介绍有关退化性和老年肌肉骨骼疾病机制的研究主题,研究了基础科学和进步,以更好地理解它们。目前,生物信息学广泛用于各种疾病的研究。整合相关的生物信息学研究可以更准确地筛选出不同的基因,从而探索潜在的疾病机制。在文章中揭示了Tox3对骨关节炎的影响:来自生物信息学的见解,作者发现了新的诊断基因TOX3,用于骨关节炎(OA),通过生物信息学通过生物信息学,这将为OA患者的未来个性化和准确的治疗(Wang et Al and div Al div>)建立一个理论基础。)。对骨缺损进展的分子机制的生物信息学分析的作者表明,三组分子过程在骨缺损的发展中起着重要作用(Liu等人)。这些相关基因可能会为骨科疾病的治疗提供新的见解。)。最近的研究表明,肌肉减少症是与肝硬化相关事件的高风险因素的存在,但是这种疾病中肌肉减少症的病理生理机制是多因素且复杂的。血浆五匹糖苷的作者是肝硬化患者的肌肉减少症,步态速度低和死亡率的有用生物标志物,这首先发现血浆五匹糖苷水平显着且独立于Sarcopenia,sarcopenia,Saeki等人(Saeki等人)显着且独立地相关。除了研究退化性疾病的发病机理外,该机制治疗的探索也很重要。顺序围手术期静脉注射tranexamic酸的影响在减少术后失血和后腰椎后腹部融合后隐藏失血:一项随机对照试验显示,
转录因子 SRY 相关 HMG 盒 9 (Sox9) 对软骨形成至关重要。SOX9 内部和周围的突变会导致以骨骼畸形为特征的软骨发育不良 (CD)。尽管 Sox9 在此背景下的功能已被充分研究,但调节软骨细胞中 Sox9 表达的机制仍有待阐明。在这里,我们使用全基因组分析来识别位于负责 CD 的近端断点簇中的 2 个 Sox9 增强子。E308(位于 5′ 上游 308 kb)和 E160(位于 5′ 上游 160 kb)的增强子活性与 Sox9 表达水平相关,并且两种增强子在体外均表现出协同作用。虽然小鼠中的单个缺失没有明显影响,但同时缺失 E308 和 E160 会导致侏儒表型,同时软骨细胞中 Sox9 表达减少。此外,在 E308/E160 缺失小鼠中,肢体芽间充质细胞的骨形态发生蛋白 2 依赖性软骨细胞分化严重减弱。最后,我们发现在 E308/E160 缺失小鼠中,Sox9 基因上游的开放染色质区域被重组,以部分补偿 E308 和 E160 的缺失。总之,我们的研究结果揭示了软骨细胞中 Sox9 基因调控的机制,这可能有助于我们理解骨骼疾病的病理生理学。