新型严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 会引起病理性肺部症状。针对这种病毒的疫苗和药物的大多数开发工作都针对刺突糖蛋白,特别是其 S1 亚基,该亚基被血管紧张素转换酶 2 识别。在这里,我们使用内部开发的工具 CaverDock 使用低温电子显微镜结构 (PDB-ID: 6VXX) 和来自先前发布的分子动力学模拟的五个最密集簇的代表性结构对刺突糖蛋白进行虚拟筛选。配体数据集来自 ZINC 数据库,包括全球批准用于临床的药物。针对完整数据集计算了单个药物通过刺突糖蛋白同源三聚体通道的轨迹、它们在通道内的结合能以及它们与三聚体三个亚基的接触持续时间。然后使用多元统计方法建立结构-活性关系并选择运动抑制的最佳候选药物。这种用于快速筛选多状态蛋白质结构(6 种状态)中全球批准药物(4359 种配体)的新协议在完成计算的速度方面表现出很高的稳健性。该协议是通用的,可以应用于任何具有包含蛋白质隧道或通道的实验性三级结构的目标蛋白质。该协议将在 CaverWeb 的下一个版本中实现(https://loschmidt.chemi.- muni.cz/caverweb/),以便更广泛的科学界可以访问它。2021 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons. org/licenses/by/4.0/)。
摘要 — 脑电图 (EEG) 是大脑电生理活动的记录,通常通过放置在头皮上的电极进行。EEG 信号包含有关大脑状态的有用信息,特定状态与特定频率的振荡(所谓的脑电波)相关;因此,EEG 信号通常根据其频率内容进行分析。一个值得注意的例子是 alpha 波 (8-14 Hz) 的幅度估计。本文提出了一种基于模型的估计方法,该方法基于已知的 alpha 波物理特性,可在快速幅度动态的情况下增强稳健性,并自动识别 alpha 波中可能存在的伪影或不连续性。本文通过应用于临床 EEG 信号说明了所提出的方法,但它特别适用于可穿戴 EEG 应用,例如脑机接口 (BCI),其中没有专家的人工监督。索引词 — 脑电图、生物医学测量、信号处理、时域分析、频域分析、数字滤波器、脑机接口
摘要 CIE 1976 L*a*b* 色彩空间 (CIELAB) 已广泛且成功地应用于各种应用,包括数字彩色成像、彩色图像质量和色彩管理。它的一个缺点是缺乏色调线性,这是色域映射中的一个关键问题,而 IPT 色彩空间已解决了这一问题,该领域对此进行了广泛应用。这两个空间的一个限制是它们不适用于高动态范围 (HDR) 成像中的颜色问题。这是因为它们在零亮度/亮度处的截距很难确定,并且它们对于比漫反射白色更亮的颜色的适用性不确定。为了解决这些 HDR 问题,提出了两个新制定的色彩空间以供进一步测试和改进,hdr-CIELAB 和 hdr- IPT。它们只是基于用更符合生理学的双曲函数(称为 Michaelis-Menten 方程)替换 CIELAB 和 IPT 中的幂函数非线性,该方程经过优化,可以最接近地模拟漫反射色域的原始色彩空间。本文描述了这些提出的模型的公式,并使用 Munsell 数据与 CIELAB、IPT 和 CIECAM02 进行了比较,进行了一些初步评估。
结果和讨论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 意外的前缘襟翼偏转。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 控制表面位置传感器和旋转可变差动变压器偏转测量。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 声波分裂。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>.使用控制面位置传感器测量的 20 稳定性和控制导数结果 ...。。。。。。。。 < /div>........... div>......20 纵向稳定性和控制结果 ............。。。。。。。。。。。。。。。。。。。。。。。。...... div>20 横向稳定性和控制结果 ...........。 。 。 。 。 。 。 . . . . . . div> . . . . . . . . . . . . . 22 使用旋转可变差动变压器表面位置的稳定性和控制导数结果 . . . . . . . . . div> . . . . . . . . . . . . 23 空气动力学模型更新 . . . . . . 。 。 。。。。。。。。...... div>............. 22 使用旋转可变差动变压器表面位置的稳定性和控制导数结果 . . . . . . . . . div> . . . . . . . . . . . . 23 空气动力学模型更新 . . . . . . 。 。 。.22 使用旋转可变差动变压器表面位置的稳定性和控制导数结果 ......... div>............23 空气动力学模型更新 . . . . . . 。 。 。23 空气动力学模型更新 ......。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>............. . . . 24 对称前缘襟翼 . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . 25 对称后缘襟翼 . . . . . . . . . . 。 。 。 。 。 。 。 。 . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . 25 对称副翼 . 。 。 。 。 。 。 。 。 < /div> . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。....24 对称前缘襟翼 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.25 对称后缘襟翼 ..........。 。 。 。 。 。 。 。 . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . 25 对称副翼 . 。 。 。 。 。 。 。 。 < /div> . . . . . .。。。。。。。。.....。。。。。。。。。。。。。。。。。。。。。。。。....25 对称副翼 .。。。。。。。。 < /div>...........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 差动前缘襟翼 ............。 。 。 。 。 。 。 。 . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . 25 差动后缘襟翼 . . . . . . . . . 。 。 。 。 。 。 。 。 . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 26 副翼 . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。。。。。。。。。.....。。。。。。。。。。。。。。。。。。。。。。。。..25 差动后缘襟翼 .........。 。 。 。 。 。 。 。 . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 26 副翼 . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。。。。。。。。。.....。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 副翼 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 差速稳定器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26