目的:橡胶广泛用于轮胎、机械零件和需要弹性的用户产品。一些基本特性仍未解决,主要是它们在过度机械性能中发挥作用。需要研究弹性橡胶在高动态压力和高拉伸强度下的性能。这些弹性体旨在增加应力断裂并保持高压拉伸强度。设计/方法/方法:本研究对炭黑聚合物基质对不同橡胶拉伸特性的影响进行了数值研究。使用每百份橡胶 (pphr) 三种不同百分比(80%、90% 和 100%)的炭黑填料部分来测量橡胶的材料特性。结果:本研究发现,随着炭黑填料比例增加 30%,拉伸强度和伸长率会增强。实际意义:本研究在四种超弹性模型中对橡胶进行了实验测试:Ogden 模型、Mooney-Rivlin 模型、Neo Hooke 模型、Arruda-Boyce 模型,使用有限元法 (FEM) 获得模拟材料响应的参数,以供比较。这四种模型已广泛应用于橡胶研究。超弹性模型已用于预测拉伸试验曲线——弹性体橡胶模型的准确描述和预测。对于四种模型,Abaqus 的 FEA 包中使用了弹性体材料拉伸数据。在预测选择合适模型的适应性时计算了相对百分比误差——弹性体橡胶模型的准确描述和预测。对于四种模型,Abaqus 的 FEA 包中使用了弹性体材料拉伸数据。在预测选择合适模型的适应性时计算了相对百分比误差。数值 Ogden 模型结果表明,大应变情况下的相对适应性误差为 1% 至 2.04%。原创性/价值:相比之下,其他模型估计参数的拟合误差从 2.3% 到 49.45%。这四个超弹性模型是拉伸试验模拟,目的是
基于光子集成电路的传感平台已显示出巨大的希望,但是它们需要集成的光学读数技术中的相应进步。在这里,我们提出了一个片上光谱仪,该光谱仪利用了综合的薄膜Niobate调制器来产生频率 - 敏捷的电频率梳子,以询问芯片尺度温度和加速传感器。chir梳过程允许超速射频驱动电压,该电压比文献中最低的少数数量较少七个数量级,并且是使用芯片尺度,微控制器驱动的直接数字合成器生成的。片上梳状光谱仪能够同时询问片上温度传感器和芯片外部,微型制动的光力加速度计,其尖端敏感性分别为5 µk·Hz -1/2和≈130µm·S -2·s -2·hz-hz -1/2。该平台与广泛的现有光子集成电路技术兼容,在该技术中,其频率敏捷性和超低射频功率要求的组合预计有望在量子科学和光学计算等领域中应用。光子集成电路(PIC)技术具有低成本,高精度的野外传播感应的巨大潜力。但是,解锁这些功能不仅需要传感器,而且还需要光学读数的整合。[2,3]这些类型的测量通常需要在MHz水平上狭窄的梳齿间距,并在GHz水平上梳子跨度,从而导致敏感且高动态范围读数。芯片尺度的光学频率梳子非常适合这些光子读数需求,因为它们具有高速,多路复用测量的能力而无需任何运动部件,[1]因此允许将光子传感器转移到数字输出。尤其是,电频率梳子不仅可以集成,而且还可以具有足够的频率敏捷性来实现探测原子过渡所需的高分辨率以及基于光学(和光力学的)腔传感器,其中需要对腔运动进行测量以读取传感器。
超导量子信息处理机主要基于微波电路,该电路具有相对较低的特性阻抗(约 100 Ω)和非谐性小的特点,这会限制它们的相干性和逻辑门保真度 1、2。一种有前途的替代方案是基于所谓的超电感器的电路 3 – 6,其特性阻抗超过电阻量子 RQ = 6.4 k Ω。然而,以前实现的超电感器由介观约瑟夫森结阵列 7、8 组成,会在量子比特附近引入非预期的非线性或寄生谐振模式,从而降低其相干性。在这里,我们提出了一种基于颗粒铝超电感器条带的通量量子比特设计 9 – 11。我们表明,颗粒铝可以形成具有高动态电感的有效结阵列,并可与标准铝电路加工原位集成。测得的量子比特相干时间 T ** ss 30 2 ≤ μ 说明了颗粒铝在从受保护的量子比特设计到量子限制放大器和探测器等各种应用领域的潜力。使用超导电路 1 构建大规模量子信息处理机器仍然是一项具有挑战性的物理和工程工作。尽管目前已经有了有前途的小规模原型 12 – 14 和必要构建块的原理验证演示,但要扩展到大量逻辑量子比特,需要在量子比特技术的各个方面取得突破,包括量子比特架构和材料。例如,当前超导量子比特处理器面临的主要挑战之一是量子态泄漏到非计算自由度 2 的问题,这可能成为扩展的障碍。 transmon 量子比特的有限非谐性可能不足以在频率上将计算空间与周围日益复杂的微波环境隔离。一种有前途的替代量子比特架构基于所谓的超电感器,其特性阻抗大于 RQ = h /(2 e ) 2 = 6.4 k Ω,例如 fluxonium 量子比特 3 ,它提供数量级更大非谐性和与 transmon 量子比特 4 相当的相干性。在这些电路中,相位的量子涨落比电荷涨落更占主导地位,并为设计新的、可能受到保护的量子电路 15、16 提供了场所。大电感器也可能成为下一代通量和相位量子比特 17 的基石。此外,采用超电感器和小电容器的微波谐振器最近已被用来增强和限制电压波动,从而实现光子和电子之间的强耦合
基于单个固态旋转的量子传感器有望敏感性和空间分辨率1 - 20的独特组合。感应的关键挑战是在给定时间内并具有高动态范围内达到最小估计不确定性。自适应策略来实现最佳的表现,但是苛刻的实验要求阻碍了它们在固态系统中的实施。在这里,我们意识到自适应D.C.通过将钻石中电子自旋的单次读数与快速反馈相结合来感测。通过基于预先的结果实时调整自旋读数基础,我们在拉姆西互联网中表现出了超过标准测量极限的敏感性。此外,我们通过模拟和实验发现,自适应方案在考虑到开销和有限的估计时间时,与最知名的非自适应方案相比,具有独特的优势。使用优化的自适应协议,我们在1.78吨的范围内实现了6.1±1.7 nt Hz -1/2的磁场灵敏度。这些结果为固态传感器开辟了一类新的实验,其中利用了对测量历史的实时知识以获得最佳性能。量子传感器有可能通过利用对单个量子系统的控制来实现前所未有的灵敏度1,2。在一个突出的示例中,基于与钻石中氮的空位(NV)中心相关的单电子旋转的传感器资本资本利用了旋转的量子相干性以及由原子样电子波函数引起的高空间分解3,4。最近,它开创性实验已经证明了磁场5 - 7,电场8,温度9,10和菌株11的单旋传感。NV传感器有可能对生物学领域12-15,纳米技术16 - 18和材料科学产生革命性的影响。基于自旋的磁力计可以感觉到D.C.通过Zeeman偏移E Z =ħγB=ħ2πfB(其中γ是Gyromag-Netic Batio,而F B是Larmor频率)在两个自旋水平| 0>和| 1>之间。在拉姆西干涉测量实验中,由π/ 2脉冲制备的叠加态(1/2√)(| 0> + 1>)将在感应时间t上演变为(1/2√)(| 0> + e i i或)。可以通过在适当的基础上读取自旋,通过调整第二π /2脉冲的相位ϑ来测量φ=2πfb t。对于以恒定感应时间t重复的拉姆西实验,不确定性σf b随着总感应时间t的降低,为1 /(2πttt√)(标准的测量灵敏度,SMS)。然而,由于信号是周期性的,因此领域的范围也随t而下降,每当|2πfb t |时都会产生歧义。 >π。这导致动态范围为f b,max /σfb≤πt /t√。
许多跨学科科学研究都需要对野火进行遥感,包括野火对生态的影响。几十年来,这项研究一直受到空间分辨率不足和探测器在短波和中波红外波长处饱和的阻碍,而高温 (>800 K) 表面的光谱辐射最为显著。为了解决这个问题,我们正在开发一种紧凑型高动态范围 (HDR) 多光谱成像仪。紧凑型火灾红外辐射光谱跟踪器 (c-FIRST) 利用数字焦平面阵列 (DFPA)。DFPA 由最先进的高工作温度屏障红外探测器 (HOT-BIRD) 和数字读出集成电路 (D-ROIC) 混合而成,具有像素内数字计数器以防止电流饱和,从而提供动态范围 (>100 dB)。因此,DFPA 将能够对温度变化范围从 300 K 到 >1600 K(燃烧的火灾)的目标进行非饱和高分辨率成像和定量检索。凭借从 500 公里的标称轨道高度解析地球表面 50 米级热特征的分辨率,一次观测即可捕获野火的全部温度和面积以及冷背景,从而增加每个返回字节的科学内容。使用非饱和 FPA 是一种新颖的做法,它克服了以前高辐射值使 FPA 像素饱和(从而降低了科学内容)的问题,并展示了遥感方面的突破性能力。因此,c-FIRST 适用于量化野火排放,这对于确定其对全球生态系统的影响至关重要。 c-FIRST 的 FPA 采用 InAs/InAsSb HOT-BIRD 外延材料制作,像素间距为 20 m,探测器阵列为 1280x480 格式,并与模拟 DROIC 混合。DFPA 的 50% 截止点为 ~4.5um,在 140K 工作温度下,整个 QE 光谱范围内测得的外部 QE~50%。我们将积分时间固定在 6 毫秒,以便在以 150 Hz 帧速率观察正常 300K 背景场景时在 MWIR 波段获得良好的灵敏度。对于标准模拟 ROIC,探测器像素在目标温度 ~700 K 时很容易饱和。当 D-ROIC 在 16 位模式下运行时,我们可以将饱和温度显著提高到 ~1100 K。当 D-ROIC 在超 HDR 32 位模式下(28 万亿电子阱深度)运行时,即使对于 1600 K 目标,探测器也不会接近饱和。火灾遥感的一个关键指标是可探测的最小目标尺寸。c-FIRST 可将可探测火灾的最小尺寸提高一个数量级,这主要是由于非饱和探测器的空间分辨率比 GOES 上的高级基线成像仪等当前维修仪器更高,同时功率、尺寸和重量也更低。c-FIRST 空中飞行计划于 2024 年火灾季节进行仪器测试和验证。我们预计 c-FIRST 太空验证将基于 2026 年或之后的空间技术验证机会。
基于皮层脑电图 (ECoG) 的双向脑机接口 (BD-BCI) 引起了越来越多的关注,因为:(1) 需要同时进行刺激和记录以恢复人类的感觉运动功能 [1] 和 (2) 良好的空间分辨率和信号保真度以及临床实用性。在刺激方面,这种 BD-BCI 可能需要 >10mA 的双相电流来引发人工感觉,以及 >20V 的电压顺应性以适应各种生物阻抗 [1]。两个刺激相之间的电荷不匹配会导致电压积累,从而造成电极腐蚀和组织损伤。现有的电荷平衡 (CB) 技术,例如电荷包注入 (CPI) [2] 和基于时间的电荷平衡 (TCB) [1],会在脉冲间隔内产生 CB 电流,导致不必要的二次感觉和过度的刺激伪影 (SA)。对于记录,低输入参考噪声 (IRN) 是获取小神经信号 (NS) 所必需的,而大动态范围 (DR) 则是容纳大 SA 所必需的。现有的记录系统采用 SAR [1] 或连续时间 delta-sigma (CT-ΔΣ) [3] ADC(图 4)。前者由于 DAC 不匹配而具有有限的 DR,而后者则受到环路延迟内大幅度尖锐 SA 引起的失真的影响。尽管在 [4] 中,ΔΣ-ADC 的采样频率会自适应地变化以适应 SA,但所需的稳定时间很长。为了解决上述问题,本文提出了一种基于 ECoG 的 BD-BCI,其中包括:(1) 具有双模基于时间的电荷平衡 (DTCB) 的高压 (HV) 刺激系统和 (2) 高动态范围 (HDR) 时域流水线神经采集 (TPNA) 系统。图 1 描绘了所提出的 BD-BCI。刺激系统包括 4 个刺激器,每个刺激器包括一个 8 位分段电流控制 DAC 和一个 HV 输出驱动器,用于生成刺激脉冲。为了执行 CB,每个刺激器都采用具有 2 种模式的 DTCB 环路,即无伪影 (AL) TCB 和脉冲间有界 (IB) TCB 模式。3 阶 II 型 PLL 为基于时间的量化创建所需的时钟。记录系统有 4 个通道,每个通道都采用低增益模拟前端 (LG-AFE)、HDR 电压时间转换器 (VTC)、两步流水线 (TSP) TDC 和一个数字核心,其中操作模式由状态机控制。受 [1] 的启发,所提出的 DTCB 的工作原理如图 2 所示。AL-TCB 监测电极电压 V ESn -V CM (1≤n≤N;此处,N=4)并调整后续刺激脉冲的幅度而不产生额外的 SA,而当 |V ESn -V CM | 过大而需要立即去除电荷时,IB-TCB 在下一个刺激脉冲之前完成 CB。在第一个 T CC 开始时,如果 |V ESn - V CM |≤V TH,AL (V TH,AL 是标志着需要立即去除电荷的过电位阈值),则 AL-TCB 导通,并且 V ESn - V CM 在第一个 T CC 周期内由 VTC 和 TDC 数字化。然后将数字数据 D TDCn 馈送到通道间干扰消除 (ICIC) 模块,该模块可补偿由于多极刺激导致的通道间干扰 (ICI) 引入的电压误差。接下来,数字直流增益增强器 (DDGB) 有助于提高 CB 精度,而不会降低 AL-TCB 环路稳定性。为了执行 CB,AL-TCB 的电流(例如,I AL-Cn )(其大小由 DDGB 输出 D ALn 控制)被添加到后续刺激电流中以调整其大小。相反,仅当 |V ESn -V CM |>V TH,AL 时,IB-TCB 才会开启并在一个 T IP 内的几个 T CC 中执行 CB,直到 |V ESn - V CM |