从 2019 年 12 月 31 日至 2020 年 8 月 30 日(本文发布日期),新型冠状病毒及其相应的感染,即冠状病毒病 (COVID-19),病例数增加到 2500 多万,死亡人数达到 843 158 人。世界各国都受到了影响,尽管程度和强度不同。尽管实施了预防性公共卫生措施,但大多数国家仍在认真准备应对一波或多波疫情。这种激增的威胁可能会持续存在,直到通过自然感染或接种疫苗获得群体免疫。然而,考虑到群体免疫所需的时间框架,以及在即将到来的秋冬季节全球范围内提供疫苗的可能性很低,应该为未来几天或几个月制定并实施应急准备计划。这些计划应该有助于缓解疫情的新高峰,同时放宽社会隔离规则、患者、公共卫生和医院层面的规定。在本文中,我们讨论了执业医师和公共卫生机构应向个人(尤其是有感染风险的人)提供的建议,以采取和实施预防措施,以应对潜在的下一次疫情高峰。关键词:合并症、应急计划、COVID-19、群体免疫、准备、疫苗接种、维生素、锌 S
在各种应用中都使用了稳定的具有较大脉冲能量和峰值功率的稳定的固态脉冲激光源,从基础研究到工业材料加工,医学和电信[1-3]。使用饱和吸收器(SA)生成脉冲激光器已成为当今最受欢迎的方法。近年来,由于成功地应用石墨烯而刺激了许多具有分层结构的二维(2D)材料,因为它们具有超快速恢复时间,可宽带饱和吸收和简单制造过程的优势,因此已重新发现了有前途且有趣的SA材料[4-7]。div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> div> tinse友好型材料,由于其独特的特性,低毒性,低毒性和低成本和低成本和低成本[8,9],对通信,微电子,激光和非线性光学领域引起了广泛关注。由于具有可调的带隙特性,SNSE 2具有明显的宽带饱和吸收特性。几层和大散装SNSE2的间接带隙范围从1.07(〜1159 nm)到1.69 eV(〜734 nm),分别对应于1.84至2.04 eV的直接频段范围[10]。几层SNSE 2的间接带隙表示在1μm下可饱和吸收剂的能力。 Cheng等人在2017年首次报道了多层SNSE 2在1μm处的非线性光学特性,这是一种基于SNSE 2 -SA的被动Q开关波导固态激光器,其最小脉冲宽度为129 ns,脉冲宽度为129 ns,脉冲能量为6.5 NJ [10]。在2018年,Zhang等人。在2018年,Zhang等人。报告了基于SNSE 2 -SA [11]的高功率被动Q开关的YB掺杂纤维激光器。到目前为止,SNSE 2的非线性光学响应已通过不同波段的Q开关或模式的激光器进行了广泛研究[12-15]。但是,对固态激光器中SNSE 2的脉冲调制特征的研究还不够。
Peak 网络以大都市为基础,包括 Park Nicollet 和 HealthPartners 医生、诊所和医院,以及一组精选的独立医生、诊所和医院。它旨在为居住在 Twin Cities 大都市地区和 St. Cloud 的人们提供一流的护理选择。所有 Peak 提供商均在网络内覆盖,不需要转诊。如果您需要医疗必需的护理,而 Peak 网络无法提供,您的提供商将与我们合作,为您提供所需的护理。
人事政策指导,支持全军做好应对永久性驻地变更夏季激增和运输限制的准备。2022 年 2 月 1 日,HRC 发布了 MILPER 消息编号 22-045,其中指出:“军衔/等级为 (COL/06) 的当地指挥官可以批准士兵将报告日期调整到新工作地点的请求,最多可比命令上公布的报告日期提前 30 天,最多可比命令上公布的报告日期晚 30 天。对于无法满足上述报告时间表的士兵,军事人事部门有权将士兵从其原始报告日期推迟最多 60 天,只要这不会发生在 2022 年 8 月 11 日至 10 月 15 日。这适用于报告日期为 2022 年 2 月 1 日至 2022 年 9 月 30 日的现役士兵。”
第 4 季度事故高峰 在我们继续关注减少第 4 季度事故高峰的同时,第 102 期包括三篇与该任务相关的文章。首先,由首席准尉 4 Rocha 和评估与标准化局的 Silva 少校提交的一篇文章,介绍了如何正确使用应急响应方法并将其应用于机组;其次,一条简短的情景信息,介绍了机组人员的选择和风险缓解,旨在帮助经验不足的机长在遇到意外风险增加和潜在控制措施时;第三,简要回顾了任务简报流程和任务简报官的重要性。此外,事故回顾还着眼于与高操作节奏、低照度、机组协调和疲劳相关的因素。这些因素可能与第 4 季度的准备培训以及部署到培训中心和 OCONUS 有关。
List of figures Figure 1 - Reduction of greenhouse gases by 2050 - source: SNBC 2 AMS scenario – MTES Figure 2 – CDN architecture for broadcasting content Figure 3 – World 2018 emissions in CO2 kg eq for 1 hour of streaming in UHD/4K on a TV (50" LED) via WiFi Figure 4 – France 2018 emissions in CO2 eq for 1 hour of streaming in UHD/4K on电视(50英寸LED)通过WiFi图5 - 格式的比例表示:从SD到8K图6 - 每类流派和过程的碳足迹,2017年和2019年 - 资料来源:Albert图7 - 音频 - 直接温室气体发射的视觉活动来源:欧洲统计局图8 - 音频的碳足迹等价 - 视觉扇区图9 - 法国电视天气报告的活动数据。资料来源:法国法国La Fabrique TV图10 - 制造足迹的年度结果:直接和间接排放图11 - 2030年列表的部分和完整的清醒场景
摘要引言本研究报告了英国大流行第一波的峰值,在英国第一波阶段的峰值上报告了30天死亡率,SARS-COV-2并发症率和与SARS-COV-2相关的医院过程。方法在英国74个中心进行了全国性的多中心研究研究,包括在英国大流行峰值肘部下方接受任何手术的所有患者。主要结局措施为30天术后死亡率,并在所有入学的患者中进行了评估。次要结果是SARS-COV-2并发症率和总体并发症率。针对每个参与中心进行了与SARS-COV-2安全过程有关的临床医生调查。结果该分析包括1093例2020年4月1日至14日接受上肢手术的患者。总30天死亡率为0.09%(1个先前存在的SARS-COV-2肺炎),日病例手术的死亡率为零。大多数中心(96%)在入院前筛查了患者的症状,在入院之前,只有22%的SARS-COV-2经常测试。SARS-COV-2并发症发生率为0.18%(2个肺炎),总并发症率为6.6%(72例患者)。两种与SARS-COV-2相关的并发症发生在手术前长时间住院的患者中,共有19例患者(1.7%)为SARS-COV-2阳性。结论即使在英国大流行峰值处,上肢手术与SARS-COV-2相关的并发症发生率也低于0.18%,而在手术当天,患者的死亡率为零。紧急手术不应延迟,等待SARS-COV-2测试的结果。日常案例上肢手术的常规SARS-COV-2测试不需要全身麻醉可能过多,并且会产生意外的负面影响。
可再生能源是我们未来能源需求的基石。尤其是,太阳能的速度比以往任何时候都更快。浮动太阳能光伏(FSPV)最近获得了陆基大规模PV安装的合适替代品。利用水面来放置太阳能电厂是一项有希望的技术。不仅它利用水作为房地产,而且还有其他几个优势。例如,FSPV可以使用现有的传输和分配基础设施,这是水力发电厂的一部分。在本文中,我们评估了FSPV工厂及其与巴基斯坦一个小型水库现有水力站的整合。我们已经研究了FSPV工厂整合的500 kV,132 kV和11 kV电压水平。此外,我们为能量利用的有效利用设计了一个水力极优化模型。与仅生产水力发电相比,由水力发电和200 MWP FSPV组成的组合系统总体上产生了3.5%以上的功率。更重要的是,FSPV的生成与每日午间峰值负载相吻合,因此是国家电网的峰值植物。©2020 Elsevier Ltd.保留所有权利。
非高峰交付能力评估方法 1.0 简介 ISO 修改了其高峰交付能力评估,以反映太阳能对满足资源充足性需求的不断变化的贡献。额外的太阳能资源为系统提供的增量可靠性效益比初始太阳能资源低得多,因为它们的输出曲线不再与输电系统的需求高峰时段保持一致,由于电表后太阳能的普及,高峰时段已转移到一天的晚些时候。因此,对输电升级的需求减少了,以支持为资源充足性目的提供额外太阳能资源的交付能力。发电开发商一直依赖以前的高峰交付能力评估方法所要求的输电升级,以确保发电不会因输电限制而受到过度削减。尽管通过 ISO 输电规划流程评估和批准可靠且经济地提供可再生能源的输电升级,但人们仍然担心输电规划流程能否及时识别升级以促进发电发展,尤其是依赖于未来发电的确切互连点的本地输电升级。因此,开发了非高峰交付能力方法来解决夏季高峰负荷期以外时段的可再生能源交付问题,以确保在可能无限限量的情况下提供最低程度的保护。2.0 非高峰交付能力评估原则非高峰交付能力评估不是为了资源充足性。这是一项补充研究,重点关注夏季高峰负荷期以外时段的可再生能源交付。非高峰交付能力评估的目的是确定需要进行的输电升级,以缓解输电限制造成的过度可再生能源限量。它告知发电厂其限量风险以及如何在早期开发阶段降低这种风险。非高峰交付能力评估建立在以下原则之上:1. 确定会导致过度可再生能源限量的输电瓶颈,但研究假设应侧重于系统范围内不太可能出现资源过剩的系统条件。2. 确定往往成本较低的针对局部限制的输电升级。此类升级的需求高度依赖于在小范围局部区域内互连的特定发电项目的开发。在系统范围的供应过剩局面出现之前,这些局部限制会受到局部发电相对较高的同时输出量的冲击。
为了稳定电力系统的运行,必须对不确定性建模威胁这些系统正常性能的不确定性。在这项研究中,根据上游净价的不确定性建模和需求响应计划(DRP)的不确定性建模(DRP),已安排了基于可再生的网格伏伏洛尔特(PV) - 燃烧器 - 燃烧器 - 燃料 - 燃料 - 燃料 - 燃料燃料燃料混合能源系统(RBHES)。实施DRP的主要原因是激励电力消费者以获得RBHES的经济目标的方式修改其能源使用模式。在本文中,间隔优化技术已用于对上游净价的不确定性进行建模,并准备稳定条件以安全地运行RBHES。将基于平均和偏差成本的基于单目标的模型转换为确定性的多目标模型,间隔优化技术模型不确定性,并确保在上游净价不确定性的最小影响下RBHES的最佳性能。为了求解上述多目标模型,使用了加权总和技术和模糊方法。已研究了RBHES作为案例研究,模拟结果表明,介绍了使用的技术的正效应以进行比较。在有或没有DRP的情况下,与确定性方法相比,间隔方法中RBHE的平均成本分别增加了1.61%和2.06%。这是RBHES的偏差成本分别降低了13.61%和15.28%。由于DRP成功实施,与缺少DRP的情况相比,RBHES的平均成本和RBHS的偏差分别降低了5.89%和11.08%。