其中 r 是 2 n 维实向量,H 是对称矩阵,称为哈密顿矩阵,不要与哈密顿算子 ˆ H 混淆。矩阵 H 可以假定为对称的,因为其中的任何反对称分量都会增加一个与恒等算子成比例的项(因为 CCR),因此相当于在哈密顿量上增加一个常数。当高阶项不显眼且可忽略不计时,通过二次哈密顿量来建模量子动力学非常常见,量子光场通常就是这种情况。此外,二次哈密顿量在其他实验中也代表了一致的近似,例如离子阱、光机械系统、纳米机械振荡器和许多其他系统。对于相互作用,量子振荡器的“自由”局部哈密顿量 ˆ x 2 + ˆ p 2 (以重新缩放的单位表示)显然是二次的。任何二次汉密尔顿量的对角化都是一个相当简单的数学程序。因为,正如我们将看到的,这种对角化依赖于识别彼此分离的自由度,所以由二次汉密尔顿量控制的系统在量子场论文献中被称为“准自由”。尽管它们的动力学很容易解决,但这样的系统仍然为量子信息理论提供了非常丰富的场景,其中用于分析二次汉密尔顿量的标准方法成为强大的盟友。
• 制造商等因交付的产品存在缺陷,导致他人生命、身体或财产受到损害的,应承担赔偿责任(《产品责任法》第 3 条)。第 2 条) • “缺陷”是指产品缺乏“通常应当具备的安全性”(《产品责任法》第2条第2款)
a 曼彻斯特城市大学自然科学系,英国曼彻斯特 M1 5GD,切斯特街 b 汉堡应用技术大学欧洲可持续发展科学与研究学院,德国 c 南里奥格兰德联邦大学 (UFRGS) 管理学院,855 Washington Luiz St, 90010460,阿雷格里港,南斯拉夫,巴西 d 帕苏丰杜大学 I 校区土木与环境工程研究生课程,Km 171, BR 285,帕苏丰杜,南斯拉夫,巴西 e 坎皮纳斯大学科技政策系,Carlos Gomes St. 250 - Cidade Universit ´ aria,坎皮纳斯 - SP,巴西 f 穆尔西亚大学,经济与商业学院,市场营销系,穆尔西亚,西班牙 g 汉堡应用技术大学,生命科学学院,可持续发展与气候变化管理研究与转移中心 (FTZ-NK),Ulmenliet 20, 21033 汉堡,德国 h广岛大学,IDEC 和平与可持续性教育与研究研究所与网络 (NERPS),日本广岛市东广岛市镜山 1-5-1,邮编 739-8529 i 诺丁汉特伦特大学,诺丁汉教育学院,英国诺丁汉 j 黎巴嫩美国大学建筑与设计学院,黎巴嫩贝鲁特
关于小册子,本研究材料总结了有关火灾报警系统的相关纽约消防局和建筑部门的规定。作为F持有人的S-97 C,您有责任熟悉具有管辖权的联邦,州和城市机构的所有适用法律,规则和法规(例如2014纽约市消防法规第9章和消防部门第1章和第9章,建筑法规第907条FD信息公告和NFPA标准72,2010版,2010年版检查,测试和维护水基消防系统,纽约市电气代码,2011年版),即使此类要求不包括在本研究材料中。第1部分。简介S-97健身证书是为了证明纽约市编程,测试,检查和服务火灾报警系统的火灾警报系统公司的校长。此认证适用于第2部分中定义的火灾警报系统,该系统在本手册中的“定义”部分中。火灾报警系统的编程,检查,测试和维修,启动设备和通知设备的系统应符合2014年纽约市纽约火灾法规,NFPA 72(2010)和设备制造商的建议,并验证火灾报警系统的正确操作。火灾警报系统的编程,检查,测试和维修仅应通过S-97/S-98健身持有人认证。S-95或F-58(FSD)C仅被允许进行每日视觉检查,每月手动火灾报警激活测试并维护日志。申请S-97/S-98健身证书的技术人员应熟悉NFPA 72(2010),2014年纽约市火灾(FC)和建筑法规,纽约市(FR),纽约市电量代码的规则,以及FDNY火灾警报公报,适用于其在S-97/S-97/S-97/S-97/S-97/S-97/S-97/S-97/S-97/S-98证书范围内适用的。FDNY提供的全面检查是基于这些书籍和文件。必须在任何FDNY火灾报警系统测试和检查中出现S-97/S-98健身持有人证书。持有人必须在“前提日志”中入学,包括持有人的姓名,健身证书,雇主,并记录访问的目的及其官方结果。FDNY在火灾警报维护的不同方面认证个人。有3个健身证书类别S-78/F-78(烟雾探测器的检查,清洁和测试S-78(全市范围内))/F-78(与前提相关)和S-97/S-98(火灾警报系统检查,测试,测试,服务技术人员)。每个证书的范围都是不同的,知道每个证书的局限性至关重要。S-97/S-98的持有人可以履行S-78/F-78证书的持有人的责任
新型视图合成由于基于越来越强大的NERF和3DGS方法而经历了重大进步。但是,反光对象的重新构造仍然具有挑战性,缺乏适当的解决方案来实现实时,高质量的渲染,同时适应反射。为了填补这一空白,我们引入了一个反光的高斯裂(ref-gaussian)框架,并具有两个组件:(i)基于物理的递延渲染,通过公式化的分裂近似来赋予像素级材料的渲染方程; (ii)首次意识到高斯跨度范式内的反射函数的高斯基间反射。为了增强几何形状建模,我们进一步引入了材料感知的诺尔传播和初始的人均阴影阶段,以及2d gaus-sian原始阶段。在标准数据集上进行的广泛实验表明,在定量指标,视觉质量和计算效率方面,参考文献超过了现有方法。此外,我们表明我们的方法是反射性场景和非反射场景的统一解决方案,超越了以前的替代方案,仅着眼于反思场景。另外,我们说明Ref-Gaussian支持更多的应用程序,例如重新设计和编辑。
这项研究首先介绍了高斯莱昂纳多多项式序列。我们获得此序列的基本属性,例如生成函数,Binet的公式,矩阵形式。此外,我们使用Leonardo编号研究了编码端解码方法。最后,我们检查了向接收器发送不正确的错误检测和校正。参考文献[1] Bacaer,N。,《数学种群动力学的简短历史》,Springer-Verlag,伦敦,2011年。[2] Horadam,A。F.,《美国数学月刊》,70(3),289,1963。[3] Shannon,C。E.,《贝尔系统技术杂志》,27(3),379,1948。[4] Moharir,P。S.,IETE研究杂志,16(2),140,1970。[5] Basu,M.,Prasad,B.,Chaos,Solitons分形,41(5),2517,2009。[6] Catarino,P。M.,Borges,A.[7] Soykan,Y。,《数学进步研究杂志》,18(4),58,2021。[8]çelemoğlu,ç。[9] Gauss,C.F。,理论残留物biquadraticorum:评论Secunda,典型Dieterichtianis,1832年。[10] Halici,S.,Sinan,O。Z.
摘要 - 可推广的感知是太空机器人技术中高级自治的支柱之一。估计动态环境中未知对象的结构和运动对于此类自主系统至关重要。传统上,解决方案依赖于目标对象的先验知识,多个不同的表示或不适合机器人操作的低保真输出。这项工作提出了一种新颖的方法,可以使用统一表示形式来逐步重建和跟踪动态未知对象 - 一组3D高斯斑点,描述了其几何形状和外观。可区分的3DGS框架适合以动态对象设置。管道的输入是一组顺序的RGB-D图像。3D重建和6-DOF姿势跟踪任务是使用基于一阶梯度的优化来解决的。该公式很简单,不需要预训练,不假定对对象或其运动的先验知识,并且适合在线应用程序。在任意相对运动下的10个未知航天器的数据集中验证了所提出的方法。实验表明,在短期到中持续时间内,目标对象的成功3D重建和准确的6-DOF跟踪。讨论了跟踪漂移的原因,并概述了潜在的解决方案。
重新介绍细节。sec中引入的。主纸的3.5,在生成新面孔后,我们通过将新生成的面孔与原始网格集成在一起来更新基础网格拓扑。此过程涉及从原始网格中删除特定面孔,确定相应的新生成的面孔,并无缝连接它们。此方法首先识别未结合重量超过预定义阈值的原始面。这些面孔随后由它们的连接组件分组。我们删除了包含比指定阈值更多的面孔的任何连接组件。接下来,我们创建一个体素体积,以记录删除的面孔中无界的高卢人的位置。在此卷中,我们根据其连接的组件确定新的脸部并取出孤立的面部,并准备与其余原始网格集成在一起。连接过程涉及顶点匹配的两个步骤:首先,对于新生成的面边界上的每个顶点X,我们将其最接近的顶点y放在原始网格边界上,将其位置设置为y,然后合并;然后,对于原始网格边界上的无与伦比的顶点,我们在新的面边界上找到了最接近的顶点,并执行类似的对齐和合并操作。最后,我们通过边缘翻转和孔填充操作完成网格重新冲突,以确保无缝表面。
总的来说,利益相关者会赞赏高地当前的沟通和协作的有效性。提出更强大的建议包括:举办社区活动和培训,使社区与富裕人士联系;参加HOA会议,社会组织和商业网络等社区活动,以增强高地的影响力;参与社交媒体进行公共教育,包括Facebook,NextDoor和新闻通讯;通过鼓励忙碌的体型并希望成为帮助者参与并领导有利于他们利益的计划的居民来利用社区冠军;区域资源共享或建立农村地区以提高效率;联合培训和授予森林健康和野生缓解项目的资金机会。