摘要:定向能量沉积工艺的应用范围很广,包括现有结构的修复、涂层或改造以及单个零件的增材制造。由于该工艺经常应用于航空航天工业,因此对质量保证的要求极高。因此,越来越多的传感器系统被用于过程监控。为了评估生成的数据,必须开发合适的方法。在这种情况下,一个解决方案是应用人工神经网络 (ANN)。本文演示了如何将测量数据用作 ANN 的输入数据。测量数据是使用高温计、发射光谱仪、照相机 (电荷耦合器件) 和激光扫描仪生成的。首先,提出了从动态测量数据系列中提取相关特征的概念。然后应用开发的方法生成数据集,用于预测各种几何形状的质量,包括焊缝、涂层和立方体。将结果与使用激光功率、扫描速度和粉末质量流量等工艺参数训练的 ANN 进行了比较。结果表明,使用测量数据可以带来额外的价值。使用测量数据训练的神经网络可以实现更高的预测精度,特别是对于更复杂的几何形状。
激光焊接技术具有高精度、高灵活性和深度穿透等优越性能,引起了学术界和工业界的广泛关注。迄今为止,缺乏可重复性和稳定性仍被视为阻碍其更广泛应用的关键技术障碍,尤其是对于要求苛刻的高价值产品。克服这一艰巨挑战的一个重要方法是结合人工智能 (AI) 技术的现场监测,这已得到大量研究的探索。监测的主要目的是收集有关该过程的基本信息并提高对发生的复杂焊接现象的理解。本综述首先描述了动态 LBW 过程中的现场光学传感、行为表征和过程建模方面的正在进行的工作。然后,重点关注了光辐射技术,例如多光谱光电二极管、光谱仪、高温计和高速摄像机,用于观察激光物理现象,包括熔池、小孔和蒸汽羽流。特别是,讨论了先进的图像/信号处理技术和机器学习模型,以确定工艺参数、工艺特征和产品质量之间的相关性。最后,讨论了主要挑战和潜在解决方案,以深入了解金属基 LBW 工艺的工艺监控领域仍需实现的目标。这篇全面的评论旨在为那些寻求引入智能焊接功能以改善和控制焊接质量的人提供最新技术的参考。
多年来,蜥蜴热生态学研究一直依靠接触式测温法获得动物的体内温度 (T b )。然而,随着技术的进步,人们对使用新的、侵入性较小的方法(如红外 (IR) 高温计和热成像法)来推断爬行动物的 T b 产生了兴趣。尽管如此,很少有研究测试过这些新工具的可靠性。本研究测试了使用红外摄像机作为一种非侵入性工具来推断蜥蜴的 T b 的效果,使用了三种不同体型的蜥蜴科物种(Podarcis virescens、Lacerta schreiberi 和 Timon lepidus)。考虑到区域异温现象的发生,我们将六个身体部位(吻部、眼睛、头部、背部、后肢、尾根)的热成像读数与常用于在现场和实验室研究中测量 T b 的泄殖腔温度(通过温度计相关的热电偶探头测量)成对进行了比较。结果显示,所有身体部位与泄殖腔温度之间存在中等至强相关性(R 2 =0.84 – 0.99)。然而,尽管尾根读数在所有三个物种中都显示出最强的相关性,但眼睛的温度绝对值和变化模式与泄殖腔测量值最为一致。因此,我们得出结论,眼睛是红外摄像机读数与动物内部环境读数最接近的身体部位。或者,也可以使用其他身体部位,只要进行仔细的校准即可。我们为未来使用热成像技术推断蜥蜴 Tb 的研究提供了指导。
热色素[3]或发光探针[4]和高温计,[5]具有传感器大小,从而建立了空间分辨率至纳米尺度(纳米热计)[6],它们都有自己的优点和缺点。反向传感器(温度计)实时指示温度,因此无法提供有关经过的温度事件的信息。相比之下,指示器(不可逆传感器)通过定义的不可逆信号改变遇到了温度事件。他们可以提供有关不希望的温度滥用的信息,即,在整个材料的整个历史上,胶水的漏洞,电子压力形成或电子功能以及所需的温度激活过程,例如固化胶或消毒。但是,这些需求需要足够小的温度指示剂添加剂,这可以精确地从所需的位置读取信息,例如两种材料之间的胶水间相互之间的胶合。对于许多应用方案,例如对易腐产品的冷链管理[7]和电子设备[8]或电池的温度监测,[9,10]光学,即比色[11]或发光[12-14],温度指示器是由于其低 - 网络可见能力而有希望的候选者。但是,它们的光信号特征意味着该指示器需要用于光线,这在许多情况下都可以防止其利用。这将使从内部获得温度历史记录,即通过非接触式读数的散装,甚至是不透明或深色实心多组件对象,这仍然是为其他方法而言。因此,由于磁信号传输本质上独立于宿主的光吸收而产生易于集成的(亚)微米尺寸的磁性温度指示剂添加剂。此外,诸如铁氧化铁之类的磁性材料对环保,廉价且进行了良好的研究。虽然基于磁性的温度依赖性[15-23]或所谓的磁性记忆效应(MME)[24,25]的实时温度传感器已经实现,但迄今为止,一种易于集成的温度指示剂添加剂具有MAG Netic Netic Netic读取选项,我们的知识尚未得到我们的知识。然而,如果这种添加剂的敏感和快速解析</div>,这种添加剂的应用潜力将是巨大的
生物医学工程学院的本科课程的详细概述1 - 学期I PHY 123:波浪和振荡,光学和热物理学3个学分,3个小时/周的波浪和振荡:简单的谐波振荡器,总能量,总能量,总能量,平均和谐型系统的差异方程两个身体振荡,质量减少,振荡,强迫振荡,共振;渐进波,固定波,组和相速度的波浪,功率和强度。光学:图像缺陷:球形像差,散光,昏迷,失真,曲率,色差。光理论;光线的干扰:Young的双缝实验,边缘的位移及其用途,菲涅尔双晶池,干扰薄膜的干扰,牛顿的环,干涉仪;光的衍射:菲涅尔和弗劳恩霍夫衍射,单缝衍射,圆形光圈的衍射,光学仪器的分辨能力,双裂和N裂缝的衍射,衍射,衍射光栅;极化:极化光的生产和分析,Brewster定律,MALUS定律,双重折射,Nicol Prism,光活性,偏光仪。Chem 125:有机和无机化学3个学分,3小时的原子结构:光,光和其他形式的电磁辐射的粒子和波质性质,原子光谱,原子光谱,BOHR模型,量子数,原子轨道;周期表:元素周期表,原子半径,电离能,电子亲和力,电负性。氧化和还原反应的基本概念。热物理学:温度测量原理:铂电温度计,热电温度计,高温计; Kinetic theory of gases, Maxwell's distribution of molecular speeds, Mean free path, Equipartition of energy, Brownian motion, van der Waal's equation of state, First Law of Thermodynamics and its application, Reversible and irreversible processes, Second Law of thermodynamics, Carnot cycle, Efficiency of heat engines, Carnot's theorem, Entropy and disorder, Thermodynamic functions, Maxwell relations, Clausius- Clapeyron方程,吉布斯相规,热力学第三定律。化学键合:不同类型的键合,共价键的细节,价键理论(VBT),分子几何形状,价壳电子对抑制(VSEPR)理论,轨道,分子轨道理论(MOT)的杂交。
伯克利地质年代学中心和加州大学伯克利分校的舒斯特实验室 实验室描述 PI Shuster 负责 BGC 和 UCB 的实验室设施,用于样品制备、特性分析、(U-Th)/He 和 4 He/3 He 热年代学以及宇宙成因核素分析。 设施包括: BGC 惰性气体实验室。BGC 惰性气体实验室设有: • 惰性气体热年代学实验室 (NGTL)。该设施设计用于 4 He/3 He 热年代学、40 Ar/39 Ar 热年代学、通过控制热提取表征惰性气体扩散动力学以及宇宙成因 21 Ne 和 3 He 测量。该实验室还可用作传统的 (U-Th)/He 实验室。NGTL 包括 (i) 经过校准的双目显微镜和摄像系统,用于制备和测量样品的几何形状; (ii) 超高真空 NG 提取系统,包括三个带有光束传输光学器件和高温计和热电偶反馈控制的二极管激光系统,在 175-1500 o C 之间提供优于 +/- 10 o C 的精度和准确度;(iii) 气体净化系统,包括 Janis 低温系统和校准标准和气体加标系统;(iv) Pfeiffer 气源四极杆质谱仪,用于使用同位素稀释测量 NG 丰度;(v) 可调收集狭缝 MAP-215-50 扇区场 NG 质谱仪,用于高精度同位素比测量;(vi) 激光烧蚀 ICPMS 实验室(如下所述),用于测量 U 和 Th。NGTL 的初始建设部分由 NSF MRI 拨款 EAR-0618219 资助,授予 PI Shuster,并继续获得 Ann 和 Gordon Getty 基金会的支持。 NGTL 实验室包括第二个可调收集狭缝 MAP-215-50 NG 质谱仪,该质谱仪配备自动稀有气体提取和低温纯化系统,可与上面描述的 NGTL 激光加热系统耦合,并针对宇宙成因 3 He 和 21 Ne 测量进行了优化,最初由 NSF I&F 计划拨款 EAR-1054079 资助给 PI Shuster。BGC U 子实验室。BGC U 子实验室包括一个带有过滤空气供应的温控仪器室,其中设有 LA-ICPMS 设备;一个相邻的 HEPA 过滤清洁化学实验室;以及专用的样品制备设施。• 激光烧蚀 ICPMS 实验室。该设施用于通过同位素稀释和激光烧蚀测量磷灰石和/或锆石中的 U 和 Th 浓度,以进行 (U-Th)/He 测定和 4 He/3 He 热年代学。该设备还用于通过同位素稀释法测量石英中的铀和钍,这对于解释宇宙成因 21 Ne 测量结果必不可少。它由 Thermo Fisher Scientific Neptune Plus 多接收器 ICPMS 组成,配有九个法拉第探测器,带有计算机切换的 10 11 和 10 12 欧姆输入电阻、具有离子计数和高丰度灵敏度离子能量过滤器的离散倍增电极电子倍增器、大容量干式接口泵以及高性能样品和撇取锥。该实验室最初由 NSF MRI 拨款 EAR-0930054 资助给 PI W. Sharp 和 D. Shuster,并继续获得 Ann and Gordon Getty 基金会的支持。UCB 和 BGC 的湿化学实验室。BGC 和附近的加州大学伯克利分校地球和行星科学系的 PI Shuster 可以使用专用的湿化学实验室空间。这些实验室包括标准通风柜(适用于矿物分离、酸蚀样品制备和常规(即非空白限制)石英中的 Be 提取)和一个过滤空气层流下流罩(适用于低空白 Be 提取化学)。