目的:由于2011年传染病学会(IDSA)的经验治疗指南(FN),病原体概况和治疗中新兴挑战的发生了重大变化。这些包括增加多药耐药(MDR)细菌的患病率以及革兰氏阴性或革兰氏阳性细菌(GPB)的分布变化。该研究旨在更新和优化血液恶性肿瘤(HM)患者的经验治疗策略,该人群特别容易受到这些不断发展的威胁的影响。方法:在2010年1月至2023年12月在HM患者中对FN的经验治疗之间发表的研究进行了文献综述,重点是病原体特征,治疗方案和治疗持续时间。结果:大约三分之一的HM FN患者出现未知来源(FUO),而40-50%的HM患者患有临床记录的感染(CDI),有10-30%的感染含量为10-30%,具有微生物学有记录的感染(MDI),占革兰氏阴性细菌(GNB)的占主导地位(GNB)。诸如延长的中性粒细胞减少症,先前的宽光谱抗生素使用以及先前具有抗药性细菌感染的因素与MDR感染有关。头孢菌素,哌拉西林/tazobactam(PTZ)和碳青霉烯是高危HM患者的可行经验治疗,尽管头孢酸单一疗法的优势仍然不确定。。经验宽光谱抗生素可以在48小时的临床稳定性和呼吸症后安全停用。结论:正确选择经验抗生素和确定最佳治疗持续时间对于降低抗生素耐药性和改善HM FN患者的预后至关重要。这些发现强调了需要更新的临床准则,这些指南解决了不断发展的病原体特征和MDR感染的日益增长的挑战。
气流 – 重量轻; – 透明。 – 潮湿条件下和低环境温度下的冷凝问题。 – 需要额外的风扇进行机械通风; 流动的液体 – 透明; – 高热容量。 – 重量大; – 泄漏风险; – 需要额外的设施,例如管道和热交换器。 气凝胶 – 高绝缘性能; – 重量轻。
• 开发了 AM 翼型冷却设计和校正系数,使燃气轮机入口温度相对于最先进的涡轮机提高 100°C,而无需增加冷却剂质量流量。
抽象可再生能源在电力供应中起着越来越重要的作用。在欧洲的背景下,可再生能源在供暖部门仍然起着较小的作用,2018年约有21%,尽管该部门占最终能源消耗的50%以上(世界能源委员会,2020年)。为了使加热部门脱碳,将高温热泵(HTHP)的整合到可再生能源系统中是一种有希望的方法。潜在的应用领域是地热系统或工业过程中的废热。目标是利用HTHP来保证在峰值载荷期间的覆盖范围,增强可再生系统的热量输出或实现废物热利用。这种系统集成需要灵活性和可靠的零件负载特性,以抵消需求中的显着波动。本研究旨在在实验室进行实验量表检查HTHP的零件载荷性能。测试系统代表HTHP,热量输出为35 kW,供应温度高达130°C。用作工作培养基的制冷剂Trans-1-氯-3,3-3-3-三氟丙烯(R1233ZD(E)),具有低全球变暖潜力(GWP)和臭氧耗竭潜力(ODP)。实施了内部热交换器(IHX)以及水冷气缸盖(CHC),以研究它们优化测试钻机性能的潜力。在50°C的热源温度和100°C的供应温度下,在定义的基本场景中检查了系统的零件负载行为。此外,供应温度的升高高达130°C与(无)CHC结合使用。分析集中在安装的气缸盖冷却的影响上。结果表明,气缸盖冷却可降低往复式压缩机的排放气体温度,从而确保材料友好型运行,同时可以回收耗散的热量并将系统效率提高高达8%。另外,可以确定对传热的主要影响,例如冷凝器中的捏点的减小。然后,可以在经济和技术优化的背景下从中得出进一步的建议。
一种高度疏水的离子液体(IL),3-氨基丙基 - tributylylylyphosphonium bis(三氟甲基索尔索尔)酰亚胺([AP 4443] [NTF 2]),并通过cel- lulose nananomearials(Cnms)(cnms)(cnms)(cnms)的表面进行了施用(cn)。修饰的CNM的化学结构,形态,热稳定性和表面疏水性都充分表征。从核磁共振光谱(1 H,13 C,19 F和31 P),傅立叶变换红外光谱,X射线光电光谱和X射线衍射证实[AP 4443] [ap 4443] [ntf 2]成功地将CNM的表面置换到2.5%的表面功能化。透射电子显微镜分析证实,修饰后保留了CNM的尺寸,但经过修饰的纤维素纳米晶体(CNC)的聚集显着。热重量分析表明,修饰的CNC从〜252℃至〜310°C的降解温度显着升高。修饰的纤维素纳米纤维(CNF)并未显示出热稳定性的升高。修饰的CNM悬浮液显示出对水的亲和力降低,并且在水性培养基中的聚集体形成。此外,水接触角测试表明,改进的CNM的疏水性增强了。这种修饰方法具有使用[AP 4443] [NTF 2] IL用于功能材料的潜力,以实现适合使用热塑料水性加工的新型疏水CNM,用于制造热稳定的复合材料,并用于电池的聚合物凝胶电解质。
作者对半结构化访谈,焦点小组,圆桌会议和讲习班的参与者表示感谢。此外,他们感谢Katya Brooks(英国卫生安全局),Kathryn Brown(野生动物信托基金会),Kamya Choudhary(Grantham Research Institute,伦敦经济学和政治学院),Annette Figueiredo(伦敦大当局),伦敦大当局),Shakoor Hajat(Shakoor Hajat(Shakoor Hajat)(Shakoor Hajat(Shakoor Hajat)) Khosla(牛津大学),Andy Love(英国阴影),Anna Mavrogianni(伦敦大学)和Swenja Surminski(Marsh McLennan/LSE)对报告和研究的反馈。本报告致力于对Adeline Stuart-Watt的记忆,后者在出版之前悲惨地去世。她深受怀念。Natalie Pearson和Georgina Kyriacou编辑了该报告。这项研究得到了经济和社会研究委员会通过基于地点的气候行动网络(PCAN)(授予号ES/S008381/1)和LSE紧急基金的支持。
摘要:为提高热循环和随机振动条件下焊点疲劳可靠性,对板级可靠性(BLR)试验板的螺丝孔位置进行研究。建立BLR试验板的有限元模型,推导了热循环和随机振动条件下影响焊点疲劳寿命的主要参数塑性应变能密度和1-sigma应力。通过灵敏度分析,分析了螺丝孔位置与疲劳寿命主要参数之间的相关性。通过多目标优化,确定了热循环和随机振动条件下焊点疲劳寿命最大的螺丝孔位置。与初始螺丝孔位置的BLR试验板相比,优化螺丝孔位置后的BLR试验板在热循环和随机振动条件下的疲劳寿命明显提高。
摘要:氮化铝 (AlN) 是少数具有优异导热性的电绝缘材料之一,但高质量薄膜通常需要极高的沉积温度 (>1000°C)。对于密集或高功率集成电路中的热管理应用,重要的是在低温 (<500°C) 下沉积散热器,而不会影响底层电子设备。在这里,我们展示了通过低温 (<100°C) 溅射获得的 100 nm 至 1.7 μ m 厚的 AlN 薄膜,将其热性能与其晶粒尺寸和界面质量相关联,我们通过 X 射线衍射、透射 X 射线显微镜以及拉曼和俄歇光谱对其进行了分析。通过反应性 N 2 的分压控制沉积条件,我们实现了 ∼ 600 nm 薄膜热导率 ( ∼ 36 − 104 W m − 1 K − 1 ) 的 ∼ 3 × 变化,上限范围代表室温下此类薄膜厚度的最高值之一,尤其是在低于 100°C 的沉积温度下。还可以从热导率测量中估算出缺陷密度,从而深入了解 AlN 的热工程,可针对特定应用的散热或热限制进行优化。关键词:热导率、氮化铝、生产线后端、热传输、溅射沉积、低温、电力电子
无量纲性能系数 ZT ,定义为 ZT = ( S 2 σ / κ )/ T [2, 3],其中 S 、 σ 、 κ 和 T 是塞贝克