自治系统(如未剥削的飞机系统(UAS))的广泛采用有可能保护战场上的美国人,增加流动性和服务不足社区的访问权限,并改善医疗结果。他们还对美国国家安全构成了重大风险,除非他们的设计以确保它们具有弹性的常规中断和恶意威胁而又不延续全身偏见的方式。,尽管有潜在的收益和重大风险,但美国还是输给了中国等外国竞争对手的全球领导。为了恢复美国的经济竞争力并保护国家安全,塔尔萨枢纽公平和可信赖的自治(Theta)将把更大的塔尔萨地区(GTR)1转变为全球竞争性的枢纽,用于开发,测试,制造,制造和部署可信赖和公平的自主系统(TEASEAS)。2由Tulsa Innovation Labs(TIL)领导,Theta代表来自GTR的70多名成员的财团,GTR是一个以12个县的区域为重点,该地区针对塔尔萨都会大都会统计区(MSA)。Theta将利用塔尔萨的航空航天制造业的强大遗产,对茶进行的研究和开发,全国独特的测试设施的大量投资,并致力于推进种族平等,以建立具有全球竞争性的技术枢纽。技术中心奖将使至少催化1.2亿美元的投资3投资3塔尔萨地区的创新经济,从而创造了60,000个新工作岗位,并为GTR创造了16亿美元的GDP。四年前,在能源行业的另一个下滑后,这一愿景似乎已经遥不可及。此外,全球使用的茶将带有“在美国塔尔萨的测试和制造”的绰号。塞塔(Theta)对经济发展愿景的概要大塔尔萨地区有望领导自主体系革命。在10年内,Theta将GTR设想为开发,测试,制造和部署可信赖和公平自治系统的中心。tulsa将在全球范围内代名词,例如未衣飞机系统,以及在全球使用中使用的自动驾驶汽车,无人机和机器人技术 - 无论是保护战场上的美国人还是向Heartland的农村社区运送药物 - 都会在美国塔尔萨(Tulsa)进行测试和制造。”theta将是通过广泛采用并确保国防技术优势确保美国经济活力所需的国内自治系统中心,同时释放了一波新公司和整个地区的好工作。GTR将成为如何利用联邦,慈善和私人投资来推动基于公平的经济发展和自我维持的增长的模型。然而,最近的联邦,私人和慈善投资是围绕国家独特的资产和行业建立数十年来建立的,这使塔尔萨的势头更新了,并在TEAS机会的背后使合作伙伴保持一致。现在,Theta的技术中心名称加速了塔尔萨地区建立全球竞争性茶业的野心。在催化剂中,2020年的塔尔萨创新实验室(TIL),塞塔(TIL),塞塔(TIL),塞塔(TIL),塞塔(TIL)的成立,其使命是将塔尔萨(Tulsa)确立为基于包容技术的经济发展的全国性领导者,而2022年为塔尔萨(BBBRC)建立了更好的区域挑战(BBBRC)授予塔尔萨地区高级流动性(TRAM)在该地区的促进了重要的行动,该地区的行动是在该地区的竞争中,该领域的发展是在该地区的一部分。 GTR的茶业。
张量凝胶技术提供了增加的可用容量,并减少了充电所需的时间。此外,张量凝胶细胞最大程度地减少了细胞内部的热量演化,从而提高了电池的效率和使用寿命。张量凝胶电池的无填充 /无溢流意味着不需要浇水。及其较大的内部表面积,机会充电也是可能的。在两班应用中也可以用作替换或替代标准电池的替代品。结果是一种多功能维护的电池技术,设定了阀门受铅酸电池的新标准。
1.量子计算与量子信息。MA Nielsen 和 IL Chuang,剑桥大学出版社 2. Ciaran Hughes、Joshua Isaacson、Anastatsia Perry、Ranbel F. Sun、Jessica Turner,“量子计算的量子好奇者”,Springer,2021 3. Maria Schuld 和 Francesco Petruccione,“使用量子计算机进行机器学习”,第二版,Springer,2021 4. Maria Schuld 和 Francesco Petruccione,“使用量子计算机进行监督学习”,Springer,2018 5. Peter Wittek,“量子机器学习——量子计算对数据挖掘意味着什么”,爱思唯尔。 7. Michael A. Nielsen 和 Issac L. Chuang,“量子计算与信息”,剑桥,2002 年 8. Mikio Nakahara 和 Tetsuo Ohmi,“量子计算”,CRC Press,2008 年 9. N. David Mermin,“量子计算机科学”,剑桥,2007 年 10. https://qiskit.org/
Silicon Sensing Systems 是硅 MEMS 陀螺仪、加速度计和惯性测量系统的市场领导者,专注于高性能、可靠性和价格实惠。凭借可追溯到 100 多年前的惯性传感领域的悠久历史,所有传感器均基于内部专利设计,并在其最先进的 MEMS 代工厂生产。Silicon Sensing 已向全球数千名满意的客户交付了超过 4000 万个传感器,并继续通过技术专长和持续创新来提高性能。
2.1硬制造考虑。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.1.1传统MEMS材料。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.1.2硅。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 2.2光刻。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 26 2.2.1掩码创建。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 27 2.2.2晶圆清洁。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 28 2.2.3二氧化硅热硅。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 2.2.4抵抗应用。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 2.2.5紫外线曝光。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 2.62.6开发。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>35 2.2.7技术考虑。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>36 2.3蚀刻方法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。38 2.3.1可用技术。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 2.3.2等离子体蚀刻(PE)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 2.3.3反应离子蚀刻(RIE)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 2.3.4物理溅射(PS)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.3.5离子束铣削(IBM)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.3.6反应性离子梁蚀刻(RIB)和化学辅助离子束蚀刻(Caibe)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.4薄膜沉积过程。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 45 2.4.1物理蒸气沉积(PVD)。 。 。42 2.3.5离子束铣削(IBM)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 2.3.6反应性离子梁蚀刻(RIB)和化学辅助离子束蚀刻(Caibe)。。。。。。。。。。。。。。。。。。。。。。43 2.4薄膜沉积过程。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45 2.4.1物理蒸气沉积(PVD)。。。。。。。。。。。。。。。。。。。。。。。。45 2.4.2化学蒸气沉积。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 2.5离子植入。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 2.6湿泡表面微加工。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。54 2.6.1硅晶片。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 55 2.6.2各向同性和各向异性蚀刻。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 57 2.6.3选择硅晶片方向。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 58 2.6.4具有牺牲层的3D结构。 。 。 。 。 。 。 。 。 。 。 。 。54 2.6.1硅晶片。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 2.6.2各向同性和各向异性蚀刻。。。。。。。。。。。。。。。。。。。。。。。。57 2.6.3选择硅晶片方向。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 58 2.6.4具有牺牲层的3D结构。 。 。 。 。 。 。 。 。 。 。 。 。57 2.6.3选择硅晶片方向。。。。。。。。。。。。。。。。。。。。。58 2.6.4具有牺牲层的3D结构。 。 。 。 。 。 。 。 。 。 。 。 。58 2.6.4具有牺牲层的3D结构。。。。。。。。。。。。。。。。。。。。。。60 2.7干式表面微加工。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。63 2.7.1深反应离子蚀刻(DRIE)。。。。。。。。。。。。。。。。。。。。。。。63 2.7.2单晶反应性etking和金属化(尖叫)64 2.7.3 Liga和UV-Liga。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。65 2.8己二。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。65 2.9电镀。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。65 2.10底物键合。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。68
免责声明:1- 为改进产品特性,本文档提供的信息(包括规格和尺寸)如有变更,恕不另行通知。订购前,建议购买者联系 SMC - 桑德斯特微电子(南京)有限公司销售部,获取最新版本的数据表。2- 在需要极高可靠性的情况下(例如用于核电控制、航空航天、交通设备、医疗设备和安全设备),应使用具有安全保证的半导体器件或通过用户的故障安全预防措施或其他安排来确保安全。3- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对用户根据数据表操作设备期间因事故或其他原因造成的任何损害负责。 SMC - 桑德斯特微电子(南京)有限公司对任何知识产权索赔或因应用数据表中描述的信息、产品或电路而导致的任何其他问题不承担任何责任。4- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对因使用超过绝对最大额定值的数值而导致的任何半导体设备故障或任何二次损坏负责。 5- 本数据表不授予任何第三方或 SMC - 桑德斯特微电子(南京)有限公司的任何专利或其他权利。6- 未经 SMC - 桑德斯特微电子(南京)有限公司书面许可,不得以任何形式复制或复印本数据表的全部或部分。7- 本数据表中描述的产品(技术)不得提供给任何其应用目的会妨碍维护国际和平与安全的一方,其直接购买者或任何第三方也不得将其用于此目的。出口这些产品(技术)时,应根据相关法律法规办理必要的手续。
摘要 — 本研究介绍了一种有前途的微加工技术,该技术采用无硅 (SON) 工艺在深度为 1 μ m 的真空腔上形成厚度为 2 μ m 的连续单晶硅膜。利用 SON 工艺,已在 8 英寸硅晶片上展示了高填充因子压电微机械超声换能器 (pMUT) 阵列,腔体宽度范围从 170 μ m 到 38 μ m。器件采用 15% 钪掺杂氮化铝作为 pMUT 的压电层,适用于空气耦合和水耦合应用。空气耦合 pMUT 的峰值位移频率为 0.8 至 1.6 MHz,Q 因子在 120 至 194 之间。水耦合 pMUT 阵列显示,在距离 20 毫米的 DI 水中,针式水听器测量的传输压力范围为 0.4 至 6.9 kPa/V,峰值频率在 5 至 13.4 MHz 之间,分数带宽为 56% 至 36%。本文提出的压电 SON 工艺有可能在低成本、高产量 pMUT 制造中获得关注。
摘要:目前硅及硅基复合材料在微电子及太阳能器件中得到广泛应用,同时随着锂离子电池容量的不断增大,对硅的纳米纤维及各种颗粒形貌提出了更高的要求。本文研究了低氟KCl–K 2 SiF 6 和KCl–K 2 SiF 6 –SiO 2 熔体电解生产纳米硅,在恒电位电解条件下(阴极过电压分别为0.1、0.15、0.25 V vs.准参比电极电位),研究了SiO 2 添加对电解硅沉积物形貌和成分的影响。将所得硅沉积物从电解液残渣中分离出来,经扫描电镜和光谱分析,制备锂离子电池复合Si/C负极,采用恒电流循环法测量所制备负极半电池的能量特性。循环表明,基于由 KCl–K 2 SiF 6 –SiO 2 熔体合成的硅的 Si/C 复合材料具有更好的容量保持率和更高的库仑效率。在 200 mA · g − 1 下进行 15 次循环后,在 0.15 V 过电压下获得的材料显示容量为 850 mAh · g − 1 。
1. 已经证明能够制造 Mg-Si zintl 化合物模型电极,并使用 XPS、STEM-EDS 和 FTIR/Raman 将 SEI 化学与硅进行比较。Q1 完成 2. 已经建立了实验和协议来了解影响硅阳极安全性的因素,特别关注硅电极上发生的高放热反应。Q1 完成 3. 已经确定了 CO2 对模型电极上 SEI 形成稳定性的影响,但检查了 SEI 性质的变化(XPS、FTIR/Raman 和定量电化学测量)作为 CO2 浓度的函数。Q2 完成 4. 已经使用 XPS、AFM/SSRM、STEM-EDS 和 FTIR/Raman 确定了 zintl 相形成机理及其对包括 Si NPs、Si 晶片、a-Si 薄膜在内的模型系统 SEI 的影响。 Q2 完成 5. 锡硅合金生产是否通过取决于该合金能否以 1g 的量制备,以及该合金的循环寿命是否比纯金属更长。 Q2 完成 6. 已经确定了 LiPAA/Si 界面的化学和界面特性(例如 Si 表面和有机材料处的化学键合性质),以及电荷(OCV,0.8V、0.4V、0.15V、0.05V)和干燥温度(100、125、150、175、200C)的关系。 Q3 7. 已经确定了粘合剂如何通过利用二维或三维模型系统改变 Si NP 尺寸和表面来改变硅电极上的应力/应变,以及电荷状态的关系。 Q3 8. 已经实施了能够比较硅阳极安全响应的协议,作为提高硅电池安全性的指标。 Q3 9. 已经发表了一篇论文,使其他研发小组能够分析硅基阳极上 SEI 的稳定性,从而使开发人员或研究人员能够不断提高硅电池的稳定性(与 Silicon Deep Dive 的共同里程碑)。Q4 10. 已经了解了形成的/可溶的 SEI 物质的性质和数量如何随电解质、粘合剂和 Si 阳极(表面