1. 已经证明能够制造 Mg-Si zintl 化合物模型电极,并使用 XPS、STEM-EDS 和 FTIR/Raman 将 SEI 化学与硅进行比较。Q1 完成 2. 已经建立了实验和协议来了解影响硅阳极安全性的因素,特别关注硅电极上发生的高放热反应。Q1 完成 3. 已经确定了 CO2 对模型电极上 SEI 形成稳定性的影响,但检查了 SEI 性质的变化(XPS、FTIR/Raman 和定量电化学测量)作为 CO2 浓度的函数。Q2 完成 4. 已经使用 XPS、AFM/SSRM、STEM-EDS 和 FTIR/Raman 确定了 zintl 相形成机理及其对包括 Si NPs、Si 晶片、a-Si 薄膜在内的模型系统 SEI 的影响。 Q2 完成 5. 锡硅合金生产是否通过取决于该合金能否以 1g 的量制备,以及该合金的循环寿命是否比纯金属更长。 Q2 完成 6. 已经确定了 LiPAA/Si 界面的化学和界面特性(例如 Si 表面和有机材料处的化学键合性质),以及电荷(OCV,0.8V、0.4V、0.15V、0.05V)和干燥温度(100、125、150、175、200C)的关系。 Q3 7. 已经确定了粘合剂如何通过利用二维或三维模型系统改变 Si NP 尺寸和表面来改变硅电极上的应力/应变,以及电荷状态的关系。 Q3 8. 已经实施了能够比较硅阳极安全响应的协议,作为提高硅电池安全性的指标。 Q3 9. 已经发表了一篇论文,使其他研发小组能够分析硅基阳极上 SEI 的稳定性,从而使开发人员或研究人员能够不断提高硅电池的稳定性(与 Silicon Deep Dive 的共同里程碑)。Q4 10. 已经了解了形成的/可溶的 SEI 物质的性质和数量如何随电解质、粘合剂和 Si 阳极(表面
主要关键词