在过去的几十年中,肥胖症的患病率大大增加,达到法国成年人口的17%,在美国达到42.4%(1,2)。如果几个因素归因于肥胖率的提高,则主要因素是饮食组成,尤其是西方饮食(WD)(3)。WD的特征是过度过滤,富含饱和脂肪,精制碳水化合物以及添加的糖和盐(4)。WD的消费增加了肥胖和代谢合并症的风险,例如2型糖尿病和非酒精性脂肪肝病(NAFLD)(5,6)。目前,2型糖尿病会影响约4.63亿成年人,而NAFLD的患病率估计在世界人口中为25%至30%(7,8)。NAFLD患病率的增加是21世纪的主要挑战,因为NAFLD是肝脏死亡率和发病率最快的贡献者(9)。
grasp65是一种由高尔基体相关的外围蛋白,该蛋白由Gorasp1基因编码,并且在体外堆叠了高尔基体蓄水系统所需。也已经提出了Grasp65在细胞分裂调节中的关键作用。然而,小鼠中Grasp65的耗竭对高尔基体结构的影响很小,迄今为止,该基因尚未与任何人类表型相关。在这里,我们报告了GORASP1(C.1170_1171DEL; P.ASP390GLUFS*18)的第一个人类致病变异的识别,该患者将神经发育障碍与神经增强性,Neuromuscu-神经肌肉,神经肌肉和骨骼异常相结合。功能分析表明,这种变体导致完全缺乏GRASP65。高尔基体的结构没有显示出碎片化,但是检测到诸如低溶性等异常的糖基异常。有丝分析分析表明,与极性染色体的突起酶和中期过量过多,表明细胞周期会延迟。在RPE细胞中概括了这些表型,其中CRISPR/CAS9引入了类似的突变。这些结果表明,人类中的grasp65丢失引起与糖基化和有丝分裂进程中缺陷相关的新型高尔基体病。
grasp65是一种由高尔基体相关的外围蛋白,该蛋白由Gorasp1基因编码,并且在体外堆叠了高尔基体蓄水系统所需。也已经提出了Grasp65在细胞分裂调节中的关键作用。然而,小鼠中Grasp65的耗竭对高尔基体结构的影响很小,迄今为止,该基因尚未与任何人类表型相关。在这里,我们报告了GORASP1(C.1170_1171DEL; P.ASP390GLUFS*18)的第一个人类致病变异的识别,该患者将神经发育障碍与神经增强性,Neuromuscu-神经肌肉,神经肌肉和骨骼异常相结合。功能分析表明,这种变体导致完全缺乏GRASP65。高尔基体的结构没有显示出碎片化,但是检测到诸如低溶性等异常的糖基异常。有丝分析分析表明,与极性染色体的突起酶和中期过量过多,表明细胞周期会延迟。在RPE细胞中概括了这些表型,其中CRISPR/CAS9引入了类似的突变。这些结果表明,人类中的grasp65丢失引起与糖基化和有丝分裂进程中缺陷相关的新型高尔基体病。
图3:这无疑是本文中最重要的信息之一。i认识到糖基化总体上受到影响,但在这个水平上,通过质谱来深入分析患者细胞的N-糖基化状态至关重要,以了解这种缺陷,戈尔吉帕蒂和糖基化之间的联系。作者使用WGA确认其糖基化缺陷。我会建议他们重复SNA和MAA的实验,这些实验是更具体的凝集蛋白。作者检测到apociii糖基化缺陷,而在转铁蛋白中无。在O-Glycans上发生的溶苷位在Alpha 2,3中,而对于N-Glycans,这主要是Alpha 2,6。缺陷可能只会影响α2,3溶性。使用两个凝集素SNA和MAA的使用应回答这个问题,但这就是为什么通过质谱法中患者细胞的N-糖基化状态很重要。这也可以在本文第二部分中使用的RPE突变细胞中完成。
结果:6 629名中老年人高脂血症患病率为26.32%(1 745/6 629)。LASSO回归和多因素Logistic回归分析均显示,体质指数(BMI)、空腹血糖、血尿酸、C反应蛋白、白细胞计数是该人群高脂血症的独立危险因素(比值比(OR)大于1,p值小于0.05)。据此构建列线图预测模型,用于估计中老年人高脂血症的风险。列线图的受试者工作特征(ROC)曲线下面积(AUC)为0.717(95%可信区间(CI):0.703~0.731),判别能力良好。决策曲线分析 (DCA) 表明当中老年人群患高脂血症的概率在 0.11 至 0.61 之间时,应用列线图可获得最高净收益,表明列线图模型具有良好的临床适用性。Spiegelhalter 的 z 统计量检验证实,列线图模型的预测概率与观察到的高脂血症频率具有很好的一致性(p = 0.560)。列线图模型的 Brier 评分为 17.1%,低于 25% 的阈值,表明校准性良好。为了内部验证列线图模型,我们进行了 500 次引导重采样。来自
抽象的生物探测可以发现具有有趣的生态特征和有价值的生物技术特征的新酵母菌菌株和物种,例如将不同的碳源从工业侧转化为生物蛋白酶UCT的能力。在这项研究中,我们在热带西非进行了未靶向的酵母菌生物镜头,收集了1,996株分离株,并在70种不同的环境中确定了它们的生长。该系列包含许多分离株,具有吸收几种具有成本效益且可持续的碳和氮源的潜力,但我们专注于含有203种能够生长在乳糖上的菌株的特征,乳糖是乳制品的主要碳源,这是乳制品行业丰富的侧流奶酪乳清中的主要碳源。通过内部转录的间隔测序对乳糖映射菌株,我们从腹部和基本肌菌群中鉴定了30种不同的酵母菌物种,以前没有证明其中有一些在乳糖上生长,有些是新物种的候选者。观察到的生长和细胞外乳糖酶活性的生长和比率差异表明,酵母菌使用一系列不同的策略来代谢乳糖。值得注意的是,几种基质菌酵母,包括apiotirichum mycotoxinivorans,Papiliotrema laurentii和Moesziomyces natararcitus,积累了多达40%的细胞干重的脂质,证明它们可以将乳糖转化为重大生物含量的生物产物。
路易斯安那州立大学健康科学中心,新奥尔良,洛杉矶70112,美国。 背景:肥胖是一种与心血管疾病(包括高血压)密切相关的全球流行病。 我们以前的研究表明,暴露于高脂饮食(HFD)的雄性小鼠心率增加(HR)和副交感神经功能受损。 在这个项目中,我们旨在调查HFD如何影响雌性小鼠,怀孕之前和期间的心血管健康及其对后代的影响。 方法:在8周龄时,将雌性C57BL/6J小鼠分配给HFD(60 kcal%脂肪)或常规饮食(RD 22 kcal%脂肪)。 进行了超声心动图以评估心脏结构和功能的变化,并采用了放射性驱动器来监测血压变化(BP),HR,BaroreFlex敏感性和自主功能。 在饮食暴露10周后,将女性与雄性配对,并在整个怀孕期间保持遥测监测。 进行了葡萄糖耐量测试(GTT),以评估响应HFD的代谢功能。 结果:暴露于HFD的雌性小鼠显示出射血分数和分数缩短的减少。 与RD对照组相比,在Nychthemeral循环的活性和静止阶段的HFD女性中,HFD女性的BP和HR显着升高了BP和HR。 此外,HFD喂养的女性表现出降低的压力反射敏感性和降低的副交感神经。 妊娠导致RD对照中的压力反射灵敏度降低,BP(第2和3周)增加,HFD进一步加剧了这两个参数。 单词计数:“ 299 /300” < /div>路易斯安那州立大学健康科学中心,新奥尔良,洛杉矶70112,美国。背景:肥胖是一种与心血管疾病(包括高血压)密切相关的全球流行病。我们以前的研究表明,暴露于高脂饮食(HFD)的雄性小鼠心率增加(HR)和副交感神经功能受损。在这个项目中,我们旨在调查HFD如何影响雌性小鼠,怀孕之前和期间的心血管健康及其对后代的影响。方法:在8周龄时,将雌性C57BL/6J小鼠分配给HFD(60 kcal%脂肪)或常规饮食(RD 22 kcal%脂肪)。超声心动图以评估心脏结构和功能的变化,并采用了放射性驱动器来监测血压变化(BP),HR,BaroreFlex敏感性和自主功能。在饮食暴露10周后,将女性与雄性配对,并在整个怀孕期间保持遥测监测。进行了葡萄糖耐量测试(GTT),以评估响应HFD的代谢功能。结果:暴露于HFD的雌性小鼠显示出射血分数和分数缩短的减少。与RD对照组相比,在Nychthemeral循环的活性和静止阶段的HFD女性中,HFD女性的BP和HR显着升高了BP和HR。此外,HFD喂养的女性表现出降低的压力反射敏感性和降低的副交感神经。妊娠导致RD对照中的压力反射灵敏度降低,BP(第2和3周)增加,HFD进一步加剧了这两个参数。单词计数:“ 299 /300” < /div>糖血症,表明代谢功能障碍。最后,与RD组相比,HFD组观察到幼犬存活率降低。结论:长期暴露于HFD会导致雌性小鼠的心血管功能受损,这在怀孕期间进一步加剧,上述效果与后代的存活率降低有关。正在进行的研究将检查后代潜在的心血管异常,并与母亲HFD暴露有关的风险。
摘要高脂饮食(HFD)和肠道微生物组的失衡与肥胖有关。然而,它们与脂质消化和吸收所涉及的基本机制之间的复杂联系在很大程度上尚不清楚。这项研究表明,经过12周的HFD喂养,C57BL/6J小鼠表现出两种不同的代谢表型,在肠道菌群组成方面存在显着差异。较低和低FMT组的小鼠具有增加的杀菌剂,可保护肥胖,胰岛素抵抗和脂质积累。补充vulgatus或胆酸(CA)减轻了HFD诱导的肥胖和代谢功能障碍。这是由于脂质液滴的积累以及在空肠上皮细胞中的Chyle颗粒的保留,从而减少了HFD之后的空肠肠系膜中的Chyle摄入量。在TPH1 IEC中HFD后,这些小鼠的空肠肠球毒细胞中的5-HT合成降低,以及在HFD IEC之后的Jejunal Mesentery中降低的Chyle摄入量,这表明宿主脂质吸收需要肠5-HT。TRPV1,一种可钙的离子通道,介导了基底外侧5-HT诱导的ISC和离子通道开放概率的增加。这项研究揭示了微生物 - 代谢物-5-HT和细胞内钙依赖性脂质吸收的新型信号轴,这可能是治疗HFD诱导的肥胖症的潜在治疗靶标。
摘要 肌肉减少性肥胖是一种以肌肉质量下降和脂肪堆积同时存在为特征的疾病,已成为代谢紊乱背景下的一个关键健康问题。本综述探讨了肌肉减少性肥胖与高脂血症之间复杂的相互作用,重点关注其对代谢健康的影响。肌肉质量下降和脂肪过多同时存在会改变脂质代谢,导致循环脂质水平升高并加剧心血管风险。导致这种失调的机制包括胰岛素抵抗、慢性低度炎症和脂肪因子分泌改变,所有这些在肌肉减少性肥胖中都会加剧。此外,这种疾病使个体易患代谢综合征、2 型糖尿病和心血管疾病,凸显了有针对性的治疗策略的必要性。本文讨论了潜在的病理生理学、生活方式因素的作用以及旨在减轻肌肉减少性肥胖对高脂血症和整体代谢健康影响的潜在干预措施。关键词:肌肉减少性肥胖、高脂血症、代谢健康、胰岛素抵抗、炎症、脂肪因子、心血管疾病、代谢综合征
和HTG导致急性胰腺炎(2)和心血管疾病(CVD)。(3,4)因此,寻求降低异常高的LDL和TG水平的靶标更有效地预防心脏病,中风和胰腺炎血管生成素样蛋白样蛋白3(ANGPTL3)是460氨基酸(AA)糖蛋白,主要由Liver分泌。angptl3包含一个N末端区域,预计本质上是无序的,一个卷曲的螺旋区域和C末端纤维蛋白原样域。(5)ANGPTL3基因的结构如图1所示。在蛋白质被裂解和糖基化后,产生了与结合和抑制脂蛋白脂肪酶(LPL)和肝脂肪酶(HL)的结合和抑制脂蛋白脂肪酶(LPL)和肝脂肪酶(HL)的N末端片段,该片段与结合和抑制脂蛋白脂肪酶(LPL)涉及。同时,分泌需要16-AA信号肽的C-末端纤维蛋白原样域(6),并参与血管生成。此功能类似于血管生蛋白的功能(7,8)