在Web-scale数据集中预先训练的视觉语言模型(VLMS)在用最小数据调整时,在下游任务上表现出了显着的功能。但是,许多VLM依赖于专有数据,而不是开源数据,这限制了使用白色框的使用进行精细调整。因此,我们旨在开发一种黑匣子方法来通过自然语言提示来优化VLM,从而避免需要访问模型参数,功能嵌入甚至输出逻辑。我们采用基于聊天的LLMS来搜索VLM的最佳文本提示。特别是,我们采用了一种自动的“爬山”程序,该程序通过评估当前提示的性能并要求LLMS根据文本反馈来对其进行融合,从而将其融合到有效的提示中,所有这些程序都在没有人类的对话过程中进行了反馈。在具有挑战性的1-Shot图像分类设置中,我们的简单方法平均超过了白色框连续提示方法(COP)1。在包括Imagenet在内的11个数据集中有5%。我们的方法还优于人工工程和LLM生成的提示。我们高出了对话反馈的优势,该反馈既不是正面和负面提示,表明LLM可以在文本反馈中利用隐式“梯度”方向,以进行更有效的搜索。此外,我们发现通过我们的策略生成的文本提示不仅更容易解释,而且还以黑盒方式在不同的VLM架构上良好地转移。最后,我们在最先进的Black-Box VLM(DALL-E 3)上演示了我们的框架,以进行文本对图像优化。
黑盒优化中解决方案的编码是一种微妙的、手工平衡,既要考虑表达能力和领域知识,又要考虑探索各种解决方案和确保这些解决方案有用。我们的主要见解是,这个过程可以通过使用质量多样性算法(此处为 MAP-Elites)生成高性能解决方案的数据集,然后从该数据集中学习生成模型(此处为变分自动编码器)的表示来实现自动化。我们的第二个见解是,这种表示可用于将质量多样性优化扩展到更高维度,但前提是我们要仔细混合使用学习到的表示生成的解决方案和使用传统变分算子生成的解决方案。我们通过学习一千个关节平面臂的逆运动学的低维编码来展示这些能力。结果表明,学习到的表示使得能够以比标准 MAP-Elites 少几个数量级的评估来解决高维问题,并且一旦解决,生成的编码可用于快速优化新颖但相似的任务。所提出的技术不仅可以将质量多样性算法扩展到高维,而且表明黑盒优化编码可以自动学习,而不是手动设计。
摘要。在本文中,我们介绍了Indmask,这是一个框架,用于解释Black-Box时间序列模型的决策。存在大量用于提供机器学习模型解释的方法时,时间序列数据需要其他考虑。一个人需要考虑解释中的时间方面,并处理大量输入功能。最近的工作提出了通过在In-In-In-Time序列上产生面具来解释时间序列预测的。掩码中的每个条目对应于每个时间步骤的每个功能的重要性得分。但是,这些方法仅生成实例解释,这意味着需要对每个输入进行分别计算掩码,从而使它们不适合归纳设置,在这种情况下,需要为众多输入生成解释,并且实例解释的生成非常严重。此外,这些方法主要是在简单的复发性神经网络上评估的,通常仅适用于特定的下游任务。我们提出的框架IndMask通过利用掩码生成的参数化模型来解决这些问题。我们还超越了经常性的神经网络,并将indmask部署到变压器体系结构上,从而真正地阐明了其模型 - 不合Snostic的性质。通过对现实世界数据集和时间序列分类和预测任务的实验进一步证明了indmask的有效性。它也是有效的,并且可以与任何时间序列模型一起部署。
《联合国生物多样性公约》及其议定书是监督现代生物技术的首要全球工具,随着该领域的新发展,该公约已成功适应。当今的“生成性”人工智能 (AI) 工具,以 ChatGPT 等文本聊天机器人而闻名,现在正被用于生成转基因生物 (GMO) 和蛋白质的新数字序列。这些由大型数字技术公司开发的模型经过大量数字 DNA 或蛋白质序列的训练,发现模式并将其应用于创建新的数字序列。这个被其倡导者称为“生成生物学”的新行业伴随着这样的承诺:这种人工智能“生物设计”工具可以为更可持续的世界提供一系列技术解决方案。现在对生成生物学的主张与对前几轮转基因生物和第一代人工智能系统的猜测相呼应。随着新问题的出现,它们都没有达到最初的商业炒作水平。
摘要 - 强调对深层生成模型的调节,这是由于与隐私和遵守监管框架有关的关注所升级,强调了对这些模型的精确控制机制的必要需求。这种紧迫性尤其强调,在这种情况下,生成模型产生的输出涵盖了可观的,令人反感的,令人反感的或可能有害的内容。在响应中,已经出现了机器,以选择性地忘记特定的知识或从预训练的模型中删除不良数据子集的影响。但是,现代机器未学习方法通常会在学习过程中访问模型参数和架构细节,这并不总是可行的。在多种下游任务中,这些模型充当黑框系统,具有无法访问的预训练参数,体系结构和训练数据。在这种情况下,过滤不需要的输出的可能性成为一种实用的选择。我们提出的方法功能特征意识相似性阈值(快速)通过系统地编码潜在空间中不需要的特征来有效地抑制不希望的输出。我们采用用户标记的正和负样本来指导此过程,利用潜在空间固有的能力来捕获这些不受欢迎的表示形式。在推断期间,我们使用潜在空间中的此确定的表示形式来计算带有新采样的潜在向量的投影相似性指标。随后,我们精心应用一个阈值以从输出中排除不可用的样品。我们的实施可从https://github.com/subhodip123/weak-unlearning-gan-gan
现代大型语言模型(LLM)开发人员通常会设置安全一致性,以防止LLM产生不受欢迎或有害内容。这个对齐过程涉及使用人体标记的数据集对模型进行微调,其中包括拒绝回答不道德或有害问题的样本。但是,最近的研究发现,LLM的安全对准可以通过越狱提示绕开。这些提示旨在创建特定的对话方案,并有一个有害的问题。用这样的提示查询LLM可能会误导该模型来回答有害问题。大多数现有的越狱攻击要求模型内部或大量的人类干预才能产生越狱的提示。更先进的技术利用遗传学方法来实现自动化和黑框。然而,遗传方法的随机性和随机性质在很大程度上限制了最先进的(SOTA)越狱攻击的有效性和效率。在本文中,我们提出了RL-Jack,这是一种新颖的Blackbox越狱攻击,该攻击由深度增强学习(DRL)提供支持。我们将越狱提示的产生作为搜索问题,并设计了一种新颖的RL方法来解决它。我们的方法包括一系列定制设计,以在越狱背景下提高RL代理的学习效率。值得注意的是,我们设计了一个llm辅助的动作空间,该空间可以在约束整体搜索空间的同时进行di-verse动作变化。一旦受过培训,我们的经纪人就可以自动针对不同的LLM产生多样化的越狱提示。此外,我们提出了一种新颖的奖励功能,为代理商获得成功越狱的卑鄙的奖励。通过严格的分析,我们发现RL作为确定性搜索策略,比随机搜索方法(例如遗传算法)更有效,并且具有较小的随机性。通过广泛的评估,我们证明了RL-Jack总体上比对六个SOTA LLM的现有越狱攻击更有效,包括大型开源模型(例如Llama2-70B)和商业模型(GPT-3.5)。我们还显示了RL-Jack对三种SOTA防御的弹性及其在不同模型中的可转移性,包括非常大的Llama2-70B。我们通过详细的消融研究进一步证明了RL-Jack的RL代理的必要性以及我们的行动和奖励设计的有效性。最后,我们验证了RL杰克对关键超参数的变化的不敏感性。
特征选择需要从给定数据集中创建特征子集,以在原始数据集和选定特征集之间建立高度互信息 (MI) 共享 [ 1 , 2 ]。形式上,给定一组特征 F = { f 1 , f 2 , · · · , fm },其中 fi ∈ R d ,设 fi K 为 fi 在 K 中的维度所跨越的子空间上的投影,设 FK = { fi K } 为一组独立的 fi 。特征选择问题定义为从 F 中选择 K ⊂{ 1 , · · · , p },使得 K 保留最多信息。虽然特征选择是经典计算中一个研究得很深入的课题 [ 3 – 6 ],但在量子算法开发的背景下,特征选择仍然是一个相对较新的领域。这项任务被认为是 NP 难题 [ 7 ],在没有关于数据集结构的先验信息的情况下,量子算法的加速上限是二次的。此前,针对特征选择问题,人们提出了容错和效用规模量子算法 [8],但成功率参差不齐 [9-15]。其中,容错量子特征选择算法分别表现出多对数时间复杂度和二次加速比。多对数时间复杂度是由于问题中隐藏着某种代数结构,而二次加速比是当手头的 NP 完全问题的结构未知时量子算法的一般 Grover 加速比 [16]。其他量子方法是实现变分方法的效用规模量子算法。尽管分析此类算法很困难,但可以合理地假设,除非进一步利用问题结构,否则此类算法的量子加速比的上限就是 Grover 加速比。表示特征选择问题的一种常用方法是二次无约束优化问题 (QUBO),可以使用经典和量子计算框架进行处理。在量子计算机上,我们既可以使用 Grover 型容错算法,也可以使用 VQE [ 17 ] 或 QAOA 型 [ 18 ] 效用规模算法来求解该问题。另一方面,当量子算法能够利用已知结构时,加速比可以更显著,比如当简化为尖峰张量分解时,加速比可以达到四次方 [ 19 ],而当与计算 Betti 数相关时,加速比甚至可以达到指数级 [ 20 , 21 ]。这促使人们探究是否存在一类具有最小结构的问题,即用户对特征拥有稍多的信息,而量子算法可能会带来一些加速。这项工作旨在解决黑盒特征选择问题 (B2FS) 的这个问题,在某些假设下,将其表述为碰撞问题 [ 22 ]。利用 Brassard-Høyer-Tapp 算法(BHT 算法)[ 23 ],一种已知的碰撞问题解决方案,我们提供了对已经高效的经典概率算法进行多项式加速的证明。据我们所知,这是已知的第一个针对最小结构化特征选择问题的量子加速。
对于 NISQ 设备的应用而言,在不进行完全纠错的情况下有效抑制错误至关重要。错误缓解使我们能够在提取期望值时抑制错误,而无需任何纠错码,但其应用仅限于估计期望值,无法为我们提供作用于任意量子态的高保真量子操作。为了应对这一挑战,我们建议将错误过滤 (EF) 用于基于门的量子计算,作为一种实用的错误抑制方案,而无需诉诸完全量子纠错。结果是一个通用的错误抑制协议,其中抑制错误所需的资源与量子操作的大小无关,并且不需要对操作进行任何逻辑编码。只要遵守错误层次结构,即当辅助 cSWAP 操作的噪声小于要纠正的操作时,该协议就会提供错误抑制。我们进一步分析了 EF 在量子随机存取存储器中的应用,其中 EF 提供了硬件高效的错误抑制。
后门攻击将中毒的样本注入训练数据,从而导致模型部署期间中毒输入的分类错误。防御此类攻击是具有挑战性的,尤其是对于仅允许查询访问的现实世界黑框模型。在本文中,我们通过零照片图像纯化(ZIP)提出了一个针对后门攻击的新型防御框架。我们的框架可以应用于中毒的模型,而无需有关模型或任何清洁/有毒样品的任何先验知识的内部信息。我们的防御框架涉及两个步骤。首先,我们在中毒图像上应用线性转换(例如模糊)以破坏后门图案。然后,我们使用预训练的扩散模型来恢复转换删除的缺失语义信息。特别是,我们通过使用转换后的图像来指导高保真纯化的图像的生成,该图像在零拍设置中起作用。我们在具有不同类型的攻击的多个数据集上评估了我们的ZIP框架。实验结果表明,与最新的后门防御基线相比,我们的拉链框架的优势。我们认为,我们的结果将为黑盒模型的未来防御方法提供宝贵的见解。我们的代码可在https://github.com/sycny/zip上找到。
关于该研究的研究“ Blackbox Chemical Industry”由Bund E.V.是环保组织的首次研究,旨在全面研究德国化学工业内的产品和能源和资源消耗。它阐明了负责在德国不同地区生产各种产品及其各自数量的特定公司。这项研究首次将能源和资源消耗数据分配给单个化学产品。在报告中,该研究还包含逐个位置的制造商和生产能力的广泛表。该研究基于2020年的数据。德国化学工业及其产品约750家化学公司在德国运营。国内化学工业主要生产塑料,尤其是用于包装,汽车行业,纺织品,建筑行业和电器。此外,肥料的生产非常重要。特种化学物质,例如用作食物补充剂和药物的维生素。该研究概述了最重要的德国化学公司及其产品。除了著名且鲜为人知的公司,这些公司生产了诸如塑料等散装化学物质(巴斯夫,巴斯克人,BP,BREALIS,DOW,Indorama Ventures Publines Companic Company Limited,Ineos,Lyondellbasell,OMF,OMF,Sabic Europe等。,该研究表明,在该国内消耗了哪些数量,以及进口和出口的数量。大量生产的化学物质(即),该研究还确定了关键物质的制造商,例如per和多氟化烷基物质(PFASS),称为“永远的化学物质”(3m/dyneon,Allessa/weylchem,Archroma,throma,solvay,solvay,daikin,daikin,daikin,daikin,daikin燃烧剂,f-select,f-select,fluoron,lanxess,lanxess,pharmpur,pharmpur and pharmpur and pharpur and w.。gore gor. gore n. gore gore。超过2,000公斤)特别是用于塑料生产的原料(例如,用于聚乙烯,聚丙烯和聚氯化物等塑料的乙烯,丙烯和氯气)以及用于化肥(氨和氨水)。该部门的巨大能源和资源要求化学工业的直接能源需求是巨大的。它不仅使用化石燃料(例如天然气),而且在更大程度上是产品本身的原料(主要是原油)。在2020年,化学工业消耗了3830亿千瓦时(1379 Petajoules),不包括上游加工步骤,例如石油炼油厂和外部采购能源发生的能源损失。这种消费代表了德国所有私人家庭消耗的电力和热量的一半以上。排除原材料并仅专注于最终能源消耗时,化学工业成为最大的工业能源消费者,