《联合国生物多样性公约》及其议定书是监督现代生物技术的首要全球工具,随着该领域的新发展,该公约已成功适应。当今的“生成性”人工智能 (AI) 工具,以 ChatGPT 等文本聊天机器人而闻名,现在正被用于生成转基因生物 (GMO) 和蛋白质的新数字序列。这些由大型数字技术公司开发的模型经过大量数字 DNA 或蛋白质序列的训练,发现模式并将其应用于创建新的数字序列。这个被其倡导者称为“生成生物学”的新行业伴随着这样的承诺:这种人工智能“生物设计”工具可以为更可持续的世界提供一系列技术解决方案。现在对生成生物学的主张与对前几轮转基因生物和第一代人工智能系统的猜测相呼应。随着新问题的出现,它们都没有达到最初的商业炒作水平。
黑盒优化中解决方案的编码是一种微妙的、手工平衡,既要考虑表达能力和领域知识,又要考虑探索各种解决方案和确保这些解决方案有用。我们的主要见解是,这个过程可以通过使用质量多样性算法(此处为 MAP-Elites)生成高性能解决方案的数据集,然后从该数据集中学习生成模型(此处为变分自动编码器)的表示来实现自动化。我们的第二个见解是,这种表示可用于将质量多样性优化扩展到更高维度,但前提是我们要仔细混合使用学习到的表示生成的解决方案和使用传统变分算子生成的解决方案。我们通过学习一千个关节平面臂的逆运动学的低维编码来展示这些能力。结果表明,学习到的表示使得能够以比标准 MAP-Elites 少几个数量级的评估来解决高维问题,并且一旦解决,生成的编码可用于快速优化新颖但相似的任务。所提出的技术不仅可以将质量多样性算法扩展到高维,而且表明黑盒优化编码可以自动学习,而不是手动设计。
关于该研究的研究“ Blackbox Chemical Industry”由Bund E.V.是环保组织的首次研究,旨在全面研究德国化学工业内的产品和能源和资源消耗。它阐明了负责在德国不同地区生产各种产品及其各自数量的特定公司。这项研究首次将能源和资源消耗数据分配给单个化学产品。在报告中,该研究还包含逐个位置的制造商和生产能力的广泛表。该研究基于2020年的数据。德国化学工业及其产品约750家化学公司在德国运营。国内化学工业主要生产塑料,尤其是用于包装,汽车行业,纺织品,建筑行业和电器。此外,肥料的生产非常重要。特种化学物质,例如用作食物补充剂和药物的维生素。该研究概述了最重要的德国化学公司及其产品。除了著名且鲜为人知的公司,这些公司生产了诸如塑料等散装化学物质(巴斯夫,巴斯克人,BP,BREALIS,DOW,Indorama Ventures Publines Companic Company Limited,Ineos,Lyondellbasell,OMF,OMF,Sabic Europe等。,该研究表明,在该国内消耗了哪些数量,以及进口和出口的数量。大量生产的化学物质(即),该研究还确定了关键物质的制造商,例如per和多氟化烷基物质(PFASS),称为“永远的化学物质”(3m/dyneon,Allessa/weylchem,Archroma,throma,solvay,solvay,daikin,daikin,daikin,daikin,daikin燃烧剂,f-select,f-select,fluoron,lanxess,lanxess,pharmpur,pharmpur and pharmpur and pharpur and w.。gore gor. gore n. gore gore。超过2,000公斤)特别是用于塑料生产的原料(例如,用于聚乙烯,聚丙烯和聚氯化物等塑料的乙烯,丙烯和氯气)以及用于化肥(氨和氨水)。该部门的巨大能源和资源要求化学工业的直接能源需求是巨大的。它不仅使用化石燃料(例如天然气),而且在更大程度上是产品本身的原料(主要是原油)。在2020年,化学工业消耗了3830亿千瓦时(1379 Petajoules),不包括上游加工步骤,例如石油炼油厂和外部采购能源发生的能源损失。这种消费代表了德国所有私人家庭消耗的电力和热量的一半以上。排除原材料并仅专注于最终能源消耗时,化学工业成为最大的工业能源消费者,
大部分关于学习人工智能代理符号模型的研究都集中在具有固定模型的代理上。这种假设在代理能力可能由于学习、适应或其他部署后修改而发生变化的环境中不成立。在这种环境下对代理进行有效评估对于了解人工智能系统的真正能力和确保其安全使用至关重要。在这项工作中,我们提出了一种新颖的方法来差异化评估已经偏离其先前已知模型的黑盒人工智能代理。作为起点,我们考虑完全可观察和确定性的设置。我们利用对漂移代理当前行为的稀疏观察和对其初始模型的了解来生成主动查询策略,该策略有选择地查询代理并计算其功能的更新模型。实证评估表明,我们的方法比从头开始重新学习代理模型要有效得多。我们还表明,使用我们的方法进行差异评估的成本与代理功能的漂移量成正比。
siliconpr0n.org/archive/doku.php?id=mcmaster:spacex:gllbsuabbba-shiraz id=mcmaster:spacex:gea-aa12-109d-tg02-pulsarad
大部分关于学习人工智能代理符号模型的研究都集中在具有固定模型的代理上。这种假设在代理的能力可能由于学习、适应或其他部署后修改而发生变化的环境中不成立。在这种环境下对代理进行有效评估对于了解人工智能系统的真正能力和确保其安全使用至关重要。在这项工作中,我们提出了一种新颖的方法来差异化评估偏离其先前已知模型的黑盒人工智能代理。作为起点,我们考虑完全可观察和确定性的设置。我们利用对漂移代理当前行为的稀疏观察和对其初始模型的了解来生成主动查询策略,该策略有选择地查询代理并计算其功能的更新模型。实证评估表明,我们的方法比从头开始重新学习代理模型要有效得多。我们还表明,使用我们的方法进行差异评估的成本与代理功能的漂移量成正比。
摘要。在本文中,我们介绍了Indmask,这是一个框架,用于解释Black-Box时间序列模型的决策。存在大量用于提供机器学习模型解释的方法时,时间序列数据需要其他考虑。一个人需要考虑解释中的时间方面,并处理大量输入功能。最近的工作提出了通过在In-In-In-Time序列上产生面具来解释时间序列预测的。掩码中的每个条目对应于每个时间步骤的每个功能的重要性得分。但是,这些方法仅生成实例解释,这意味着需要对每个输入进行分别计算掩码,从而使它们不适合归纳设置,在这种情况下,需要为众多输入生成解释,并且实例解释的生成非常严重。此外,这些方法主要是在简单的复发性神经网络上评估的,通常仅适用于特定的下游任务。我们提出的框架IndMask通过利用掩码生成的参数化模型来解决这些问题。我们还超越了经常性的神经网络,并将indmask部署到变压器体系结构上,从而真正地阐明了其模型 - 不合Snostic的性质。通过对现实世界数据集和时间序列分类和预测任务的实验进一步证明了indmask的有效性。它也是有效的,并且可以与任何时间序列模型一起部署。
特征选择需要从给定数据集中创建特征子集,以在原始数据集和选定特征集之间建立高度互信息 (MI) 共享 [ 1 , 2 ]。形式上,给定一组特征 F = { f 1 , f 2 , · · · , fm },其中 fi ∈ R d ,设 fi K 为 fi 在 K 中的维度所跨越的子空间上的投影,设 FK = { fi K } 为一组独立的 fi 。特征选择问题定义为从 F 中选择 K ⊂{ 1 , · · · , p },使得 K 保留最多信息。虽然特征选择是经典计算中一个研究得很深入的课题 [ 3 – 6 ],但在量子算法开发的背景下,特征选择仍然是一个相对较新的领域。这项任务被认为是 NP 难题 [ 7 ],在没有关于数据集结构的先验信息的情况下,量子算法的加速上限是二次的。此前,针对特征选择问题,人们提出了容错和效用规模量子算法 [8],但成功率参差不齐 [9-15]。其中,容错量子特征选择算法分别表现出多对数时间复杂度和二次加速比。多对数时间复杂度是由于问题中隐藏着某种代数结构,而二次加速比是当手头的 NP 完全问题的结构未知时量子算法的一般 Grover 加速比 [16]。其他量子方法是实现变分方法的效用规模量子算法。尽管分析此类算法很困难,但可以合理地假设,除非进一步利用问题结构,否则此类算法的量子加速比的上限就是 Grover 加速比。表示特征选择问题的一种常用方法是二次无约束优化问题 (QUBO),可以使用经典和量子计算框架进行处理。在量子计算机上,我们既可以使用 Grover 型容错算法,也可以使用 VQE [ 17 ] 或 QAOA 型 [ 18 ] 效用规模算法来求解该问题。另一方面,当量子算法能够利用已知结构时,加速比可以更显著,比如当简化为尖峰张量分解时,加速比可以达到四次方 [ 19 ],而当与计算 Betti 数相关时,加速比甚至可以达到指数级 [ 20 , 21 ]。这促使人们探究是否存在一类具有最小结构的问题,即用户对特征拥有稍多的信息,而量子算法可能会带来一些加速。这项工作旨在解决黑盒特征选择问题 (B2FS) 的这个问题,在某些假设下,将其表述为碰撞问题 [ 22 ]。利用 Brassard-Høyer-Tapp 算法(BHT 算法)[ 23 ],一种已知的碰撞问题解决方案,我们提供了对已经高效的经典概率算法进行多项式加速的证明。据我们所知,这是已知的第一个针对最小结构化特征选择问题的量子加速。
模型是人工智能可解释性 (XAI) 的主要趋势之一,表明其缺乏可解释性和社会后果。我们使用代表性消费者小组来测试我们的假设,报告了三个主要发现。首先,我们表明,黑盒模型的事后解释往往会提供有关算法底层机制的部分和偏见信息,并且可能会通过转移用户的注意力而受到操纵或信息隐瞒。其次,除了自我报告的感知指标之外,我们还展示了经过测试的行为指标的重要性,以提供对可解释性维度的更全面的看法。本文有助于阐明本质上透明的人工智能模型与黑盒复杂模型的事后解释之间的实际理论争论——这场争论很可能在未来人工智能系统的发展和操作化中发挥重要作用。
对于 NISQ 设备的应用而言,在不进行完全纠错的情况下有效抑制错误至关重要。错误缓解使我们能够在提取期望值时抑制错误,而无需任何纠错码,但其应用仅限于估计期望值,无法为我们提供作用于任意量子态的高保真量子操作。为了应对这一挑战,我们建议将错误过滤 (EF) 用于基于门的量子计算,作为一种实用的错误抑制方案,而无需诉诸完全量子纠错。结果是一个通用的错误抑制协议,其中抑制错误所需的资源与量子操作的大小无关,并且不需要对操作进行任何逻辑编码。只要遵守错误层次结构,即当辅助 cSWAP 操作的噪声小于要纠正的操作时,该协议就会提供错误抑制。我们进一步分析了 EF 在量子随机存取存储器中的应用,其中 EF 提供了硬件高效的错误抑制。