siliconpr0n.org/archive/doku.php?id=mcmaster:spacex:gllbsuabbba-shiraz id=mcmaster:spacex:gea-aa12-109d-tg02-pulsarad
大部分关于学习人工智能代理符号模型的研究都集中在具有固定模型的代理上。这种假设在代理能力可能由于学习、适应或其他部署后修改而发生变化的环境中不成立。在这种环境下对代理进行有效评估对于了解人工智能系统的真正能力和确保其安全使用至关重要。在这项工作中,我们提出了一种新颖的方法来差异化评估已经偏离其先前已知模型的黑盒人工智能代理。作为起点,我们考虑完全可观察和确定性的设置。我们利用对漂移代理当前行为的稀疏观察和对其初始模型的了解来生成主动查询策略,该策略有选择地查询代理并计算其功能的更新模型。实证评估表明,我们的方法比从头开始重新学习代理模型要有效得多。我们还表明,使用我们的方法进行差异评估的成本与代理功能的漂移量成正比。
无监督域自适应 (UDA) 是一种新兴技术,它能够将从标记源域中学到的领域知识转移到未标记的目标域中,从而提供一种应对新域中标记困难的方法。大多数先前的工作都依赖于源域和目标域数据进行自适应。然而,由于担心患者数据中包含的敏感信息可能泄露,因此在跨中心协作中共享源域中的数据和标签以及训练的模型参数通常具有挑战性。为了解决这个问题,我们提出了一个实用的 UDA 框架,该框架具有仅在源域中训练的黑盒分割模型,而不依赖于源数据或可访问网络参数的白盒源模型。特别是,我们提出了一种知识蒸馏方案来逐步学习特定于目标的表示。此外,我们通过无监督熵最小化来规范目标域中标签的置信度,从而比没有熵最小化的 UDA 获得性能提升。我们在一些数据集和深度学习主干上对我们的框架进行了广泛的验证,证明了我们的框架在具有挑战性但又现实的临床环境中应用的潜力。
大部分关于学习人工智能代理符号模型的研究都集中在具有固定模型的代理上。这种假设在代理的能力可能由于学习、适应或其他部署后修改而发生变化的环境中不成立。在这种环境下对代理进行有效评估对于了解人工智能系统的真正能力和确保其安全使用至关重要。在这项工作中,我们提出了一种新颖的方法来差异化评估偏离其先前已知模型的黑盒人工智能代理。作为起点,我们考虑完全可观察和确定性的设置。我们利用对漂移代理当前行为的稀疏观察和对其初始模型的了解来生成主动查询策略,该策略有选择地查询代理并计算其功能的更新模型。实证评估表明,我们的方法比从头开始重新学习代理模型要有效得多。我们还表明,使用我们的方法进行差异评估的成本与代理功能的漂移量成正比。
模型是人工智能可解释性 (XAI) 的主要趋势之一,表明其缺乏可解释性和社会后果。我们使用代表性消费者小组来测试我们的假设,报告了三个主要发现。首先,我们表明,黑盒模型的事后解释往往会提供有关算法底层机制的部分和偏见信息,并且可能会通过转移用户的注意力而受到操纵或信息隐瞒。其次,除了自我报告的感知指标之外,我们还展示了经过测试的行为指标的重要性,以提供对可解释性维度的更全面的看法。本文有助于阐明本质上透明的人工智能模型与黑盒复杂模型的事后解释之间的实际理论争论——这场争论很可能在未来人工智能系统的发展和操作化中发挥重要作用。
摘要 - 由人脑的工作方式吸引,急剧的高维计算(HDC)正在受到越来越多的关注。HDC是一种基于大脑的工作机理的新兴计算方案,该方案具有深层和抽象的神经活动模式而不是实际数字。与传统的ML算法(例如DNN)相比,HDC以内存为中心,授予其优势,例如相对较小的模型大小,较小的计算成本和一声学习,使其成为低成本计算平台中的有前途的候选人。但是,尚未系统地研究HDC模型的鲁棒性。在本文中,我们通过开发基于黑盒差异测试的框架来系统地揭示HDC模型的意外或不正确行为。我们利用具有与交叉引用甲环类似功能的多个HDC模型,以避免手动检查或标记原始输入。我们还提出了HDXplore中不同的扰动机制。HDXplore自动发现了HDC模型的数千种不正确的角案例行为。我们提出了两种重新训练机制,并使用HDXplore生成的角病例来重新培训HDC模型,我们可以将模型准确性提高高达9%。
摘要。组织越来越多地将人工智能 (AI) 用于业务流程。基于 AI 的建议旨在支持用户进行决策,例如通过预过滤选项。但是,用户通常很难理解这些建议是如何制定的。这个问题被称为“黑箱问题”。在人力资源管理的背景下,这引发了有关在招聘过程中接受基于 AI 的建议的新问题。因此,我们开发了一个基于计划行为理论的模型,该模型解释了用户对黑箱问题的感知与对基于 AI 的建议的态度之间的关系,区分了强制和自愿使用环境。我们对招聘和 AI 领域的专家进行了 21 次采访。我们的结果表明,由意识和评估的相关性概念化的对黑箱问题的感知与用户对基于 AI 的建议的态度有关。此外,我们表明使用环境对这种关系有调节作用。
人工智能代理的最后一个要素是其运行的环境。环境决定了传入数据的来源和有效性,代理通过其输出影响环境(例如,对公司未来的风险评估可能会影响公司的行为)。这种反馈循环在“强化学习”中尤为重要,在强化学习中,人工智能代理通过反复试验从与环境的交互中学习,并因表现良好而获得奖励。如果将人工智能代理部署在不同的环境中,它不太可能正常运行(例如,经过训练以识别业务风险的系统在非业务环境中可能表现不佳)。因此,人工智能代理的不当行为可能是由于它部署在未经训练的环境中而导致的。
代谢途径建模在药物设计中发挥着越来越重要的作用,因为它可以让我们更好地了解生物体代谢中潜在的调控和控制网络。然而,尽管该领域取得了快速进展,但途径建模对研究人员来说可能成为一场真正的噩梦,尤其是在实验数据很少或途径高度复杂的情况下。在这里,开发了三种不同的方法来模拟溶组织阿米巴原虫糖酵解的第二部分作为应用示例,并成功预测了最终的途径通量:一种包括详细的动力学信息(白框),另一种添加了调整项(灰框),最后一种使用人工神经网络方法(黑框)。之后,每个模型都用于代谢控制分析和通量控制系数确定。该途径的前两种酶被确定为在通量控制中发挥作用的关键酶。这项研究揭示了这三种方法对于在代谢途径建模领域根据现有数据构建合适模型的重要意义,对生物学家和建模者都有用。