基因工程小鼠(GEM)模型通常用于生物医学研究中。生成的宝石涉及需要复杂的设备和高技能技术人员的复杂实验程序。由于这些原因,大多数研究机构都建立了集中的核心设施,在这些核心设施中为研究小组创建了自定义的宝石。研究人员开始考虑为研究生成宝石时,他们的脑海中出现了几个问题。例如,哪种类型的模型对我的研究最有用,我如何设计它们,最新的技术和工具是用于开发我的模型的最新技术和工具,最后如何在我的研究中培养宝石。由于鼠标设计中有几个注意事项和选择,而且由于这是一项昂贵且耗时的努力,因此仔细的计划可以确保成功的最大机会。在本文中,我们为研究人员开始考虑为他们的工作生成鼠标模型时出现的几个常见问题提供了简短的答案。
抽象的计算机鼠标跟踪提供了一种简单且具有成本效益的方式来收集连续的行为数据,并且主要用于心理学科学来研究认知过程。本研究扩展了计算机鼠标跟踪的潜在适用性,并研究了使用计算机鼠标跟踪进行应力测量的可行性。利用了首先经验结果和理论考虑,我们假设压力会影响与小鼠使用有关的感觉运动过程。为了探索压力和计算机鼠标使用之间的关系,我们进行了一个参与性场地实验,其中n = 994名参与者在高压力或低压力条件下从事四个鼠标任务。在操纵检查中,参与者报告了两种条件之间的压力水平不同。但是,频繁的和机器学习数据分析方法并未揭示小鼠使用与压力之间的明确和系统关系。这些发现挑战了使用直接计算机鼠标跟踪进行广义应力测量的可行性。
了解神经系统的功能需要绘制其由功能,解剖或基因表达定义的其组成细胞的空间分布。最近,组织制备和显微镜的发展使整个啮齿动物大脑都可以成像细胞弹出。但是,手动映射这些神经元很容易出现偏见,并且通常不切实际地消耗。在这里,我们提出了一种使用stan-dard台式计算机硬件的鼠标全脑显微镜图像中完全自动化的3D检测神经元somata的开放源算法。我们通过绘制大脑范围的位置来证明方法的应用和力量,这些位置的大脑种群用逆行跨突触性VI-RAL感染表达的细胞质泛流蛋白标记。
这项研究探讨了训练计算机鼠标在非主导手中使用的效果对单击主导和非主导手的性能的效果。计算机鼠标的使用是工作场所中的日常操作,需要通过练习和训练多年来开发和精致的小手和腕部动作。我们的研究有11名右手计算机鼠标用户每天训练他们的非主导手15分钟,每周五天,持续6周。这项研究发现,由于训练的双边转移效果,在非主导手训练后,计算机鼠标的性能提高了。此外,我们的研究表明,非主导手能够学习我们主导的手已经训练多年的复杂运动。最后,我们的研究表明,当技能未经培训一年以上时,非主导性手势会降低,但性能明显高于原始培训之前的性能,并且可以迅速重新学习。总的来说,培训无计算机鼠标的非主导手将允许行业的表现提高,同时允许在众多经济体中更安全,可持续和更可实现的工作。
在最好的日子里,使用涉及整个基因组和整个外显子组测序(WGS/WES)的最先进的遗传方法,遗传学家只有大约50:50的机会快速识别人类健康和发育异常的变异因果[1]。现在斑块WGS/WES研究的未知意义(VUS)变体,已经开发出了许多生物信息学方法来预测VUS致病性[2]。定义VUS功能的一种综合方法是创建动物模型,因此产生了一种关注感兴趣VU的转基因生物。对于哺乳动物的生物学,啮齿动物是最容易转基因的物种,猪模型迅速发展[3,4]。诱导多能茎的基因组编辑通过培养“菜肴中的疾病”来支持VUS研究[5,6];然而,来自其他物种的信息,比较遗传学,仍然是破译VUS生理效应的宝贵工具,从而影响了其研究的优先级。Graff及其同事的研究“ PEA15家用CAT中功能的丧失和有缺陷的大脑发育”是一个有力的例子,表明鼠模型何时不会受到挑战[7],并且认识到其他物种模型的价值。基于对敲除小鼠的原代星形胶质细胞培养物的分析,在星形胶质细胞15中表达的磷蛋白(PEA15)已知数十年已知,在星形胶质细胞中表达并正常功能以抑制肿瘤坏死因子alpha(TNFα)诱导的细胞中的凋亡[8]。因此,PEA15并不与大脑发育有关。然而,具有PEA15靶向突变的小鼠具有正常的脑大小和病理,与家猫新定义的神经系统相反[7,9]。Graff及其同事研究是大型动物模型(特别是家猫)持续重要性的一个远面例子。数百只伴侣动物已被鉴定出基因中也引起相似人类疾病的基因中的DNA变异(表1)[10]。Recent WGS studies in domestic cats have implicated causal variants in novel genes, including KIF3B variants causing retinal degeneration ( OMIA 002267-9685 ), UGDH causing disproportionate dwarfism ( OMIA 000187-9685 ), and GDF7 associated with another brain dysmorphology ( OMIA 000478-9685 ), all患有未诊断的人类患者的疾病[11-13]。神经元的脂肪促脂肪肌动症的新模型(OMIA 001962-9685; OMIA 001443-9685)进一步利用了WGS,现在是家猫[14,15]。基因间结构变异(SV)和基因组组织变异正越来越被识别为基因功能的关键。CAT中SV的重要性由常见的低苯二甲酸苯甲酸甲苯胺和氨烷蛋白表现出来。白猫是神经学研究的历史模型之一,因为所有白猫中的很高比例具有先天性的耳聋。白色是由大约700 bp插入套件的内含子1插入的家猫中的主要特征,该基因已知会引起各种
相关性受体酪氨酸激酶,该激酶结合了居住在相邻细胞上的混杂GPI锚定的Ephrin-A家族配体,从而导致接触依赖性双向信号传导进入相邻细胞。受体下游的信号通路称为正向信号传导,而ephrin配体下游的信号通路称为反向信号传导。在GPI锚定的Ephrin-A配体中,EFNA5是EFNA7的同源/功能性配体,它们的相互作用调节脑发育调节细胞细胞粘附和排斥。在轴突上具有驱虫活性,例如参与了皮质丘脑轴突的引导以及视网膜轴突对丘的正确地形图。还可以通过caspase(CASP3)依赖性促凋亡活性来调节脑发育。正向信号传导可能会导致ERK信号通路的组件激活,包括MAP2K1,MAP2K2,MAPK1和MAPK3,它们在激活EPHA7时被磷酸化。
肽聚糖识别蛋白1,也称为肽聚糖识别蛋白短,PGRP-S,PGLYRP1,PGLYRP,PGLYRP,PGRP和TNFSF3L,是一种分泌的蛋白质,是一种属于当时的乙酰乙酰氨基酰酰酰酰酰酰酰酰属丙氨酸氨基胺2家族。pglyrp1 / pglyrp在骨髓中高度表达。它在肾脏,肝脏,小肠,脾脏,胸腺,外周白细胞,肺,胎儿,胎儿脾脏和中性粒细胞中弱表达。pGlyrp1 / pGlyRP是一种与革兰氏阳性细菌的肽肽糖(PGN)结合的模式受体。它具有杀菌活性对革兰氏阳性细菌。pGlyRP1 / pGlyRP可能会干扰肽聚糖的生物合成来杀死革兰氏阳性细菌。它也与革兰氏阴性细菌结合,并具有抑菌活性对革兰氏阴性细菌。肽聚糖识别蛋白(PGRP或PGLYRP)是先天免疫蛋白,从昆虫到哺乳动物保守,识别细菌肽聚糖,并在抗菌免疫和炎症中起作用。哺乳动物具有四个PGRP:PGLYRP1,PGLYRP2,PGLYRP3和PGLYRP4。它们是分泌的蛋白质,在多形核白细胞(PGLYRP1),肝脏(PGLYRP2)或身体表面,粘膜和分泌物(唾液,汗水)中表达(PGLYRP3和PGLYRP4)。所有PGRP都识别细菌肽聚糖。PGRP可能在抗菌防御和几种炎症性疾病中发挥作用。它们调节组织中局部炎症反应(例如关节炎),并且有证据表明PGRP与炎症性疾病(如牛皮癣)相关。
在活动中,他坐在鼠标前,键盘和其他控件的舞台上,将计算机显示屏投影到他身后22英尺高的视频屏幕上。在一个多小时的时间内,他展示了一个网络,交互式计算系统如何允许在协作科学家中迅速共享信息。他证明了他在四年前发明的鼠标如何用于控制计算机。他演示了文本编辑,视频会议,超文本和窗口。