York,NY。 6英国格拉斯哥大学卫生与福祉学院,英国格拉斯哥大学7 7号心理学系,纽约州纽约州纽约州纽约州精神病学研究院首尔大学北国立大学,纽约州纽约州纽约州纽约州纽约州9号萨克勒发展研究所的神经科学部,York,NY。6英国格拉斯哥大学卫生与福祉学院,英国格拉斯哥大学7 7号心理学系,纽约州纽约州纽约州纽约州精神病学研究院首尔大学北国立大学,纽约州纽约州纽约州纽约州纽约州9号萨克勒发展研究所的神经科学部,
1 美国约翰霍普金斯大学医学院分子生物学和遗传学系;2 美国约翰霍普金斯大学医学院精神病学和行为科学系;3 美国纽约州立大学下州医学中心罗伯特 F. 弗奇戈特行为神经科学中心生理学和药理学系;4 挪威科技大学卡夫利系统神经科学研究所和神经计算中心,挪威特隆赫姆;5 美国约翰霍普金斯大学医学院霍华德休斯医学研究所;6 美国约翰霍普金斯大学医学院放射学和放射科学系;7 美国约翰霍普金斯大学医学院神经科学系;8 美国约翰霍普金斯大学医学院遗传医学系; 9 纽约大学神经科学中心,纽约,美国;10 纽约大学朗格尼医学中心神经科学研究所,纽约,美国;11 约翰霍普金斯大学医学院眼科系,巴尔的摩,美国
海马是认知的大脑区域。人类SOX2转录因子中的突变会导致神经发育缺陷,导致智障和癫痫发作,以及海马发育不良。我们在小鼠中产生了一系列等位基因SOX2条件突变,在不同的发育阶段删除SOX2。SOX2晚期缺失(来自E11.5,通过Nestin-Cre)仅影响产后海马发育;早期的缺失(来自E10.5,EMX1-CRE)显着降低了齿状回(DG),最早的缺失(来自E9.5,FOXG1-CRE)会导致剧烈的异常,几乎完全没有DG。我们识别一组功能相互连接的基因(Gli3,Wnt3a,cxcr4,p73和tbr2),已知在海马胚胎发生中起着重要作用,在SOX2早期突变体中被下调,以及(Gli3和cxcr4)直接通过SOX2键入SOX2;它们的下调提供了导致缺陷的合理分子机制。对EMX1-CRE小鼠模型的电生理研究显示CA1和CA3区域的兴奋性传播改变了。对EMX1-CRE小鼠模型的电生理研究显示CA1和CA3区域的兴奋性传播改变了。
摘要 - 海马中的数据存储在巨大的取决于齿状回的有效设计部门。在我们的演示中,结合了有关内嗅皮层,齿状回和海马解剖结构的最新数据以及设计划分中的功能。构建了三层馈送尖峰神经网络。具有简化的突触和分子过程,从啮齿动物的海马中汲取灵感。构建尖峰神经网络,该网络可以区分各种刺激或网络损害带来的激发模式和抑制比率失衡是该项目的目标。这项研究对齿状回神经元背后的分子过程的独特想法提出了对突触和连接的损害的抵抗力,这导致了神经元的不平衡刺激抑制活性。这种简化的分子和细胞推定的基于机制的尖峰神经网络在各种程度的刺激下显示出有效的知识存储,可用于认知机器人。关键字:齿状回,模式分离,不平衡网络,后传播和海马都与内存有关。I.创建尖端人工系统的简介,计算科学家采用了神经科学领域的知识。这项研究的基本问题是缺乏有关脑系统涉及的参数和认知活动的神经生物学的知识。人工智能是啮齿动物的认知过程,包括它们的各种记忆能力,在批评其神经系统的结构以及有关神经元结构及其电特征的介绍信息。工程师创建了智能设备和认知架构,这是由于动物大脑的化学,细胞和网络结构及其认知过程的能力[1,2]。
终生的海马神经发生由驻留在齿状回(DG)的亚细胞区域的多能成人神经干细胞(ANSC)池维持。指导NSC从发育状态到成人国家的过渡的机制尚不清楚。我们通过使用基于Nestin的报告基因小鼠在Cyclin d2中表明ANSC池是通过Cyclin D2依赖性增殖在生命的第一周中建立的。不存在细胞周期蛋白D2不会影响齿状回的正常发育,直到出生,但可以防止产后形成径向神经胶质样的ANSC。此外,逆转录病毒命运映射显示,ANSC是在出生后不久位于齿状回的前体的现场出生的。综上所述,我们的数据确定了至关重要的时间窗口和前体划分的空间位置,该划分产生了ANSC的持续人群,并证明了Cyclin D2在此过程中的核心作用。
宫内生长限制(IUGR)使多达10%的人妊娠复杂化,这是围产期发病率和死亡率早产后的第二个主要原因。发达国家中最常见的IUGR病因是子宫核心不足(UPI)。对于IUGR怀孕的幸存者,长期研究一致地表明,认知受损的风险增加了,包括学习和记忆力。其中,只有少数人的研究强调了性别差异,男性和女性对不同障碍的敏感性不同。此外,IUGR会影响白物质和灰质,从大脑磁共振成像中得出了很好的确定。海马,由齿状回(DG)和Cornu氨(CA)子区域组成,是对学习和记忆至关重要的重要灰质结构,尤其容易受到UPI的慢性低氧缺血作用的影响。海马体积减少是学习和记忆降低的有力预测指标。在动物模型中还可以看到DG和CA中的神经元数量减少,并且DG和CA中的树突状和轴突形态减弱。在很大程度上没有探索的是产前变化,使iugr后代易于产后学习和记忆递减。缺乏知识将继续阻碍未来治疗以改善学习和记忆的设计。在这篇综述中,我们将首先介绍有关IUGR后神经后遗症的临床敏感性和人类流行病学数据。研究,我们将遵循使用实验室的IUGR小鼠模型(模拟人IUGR表型)生成的数据,以在胚胎海马DG神经发生中的细胞和分子改变下进行剖析。我们最后将提出一个新的关于产后神经元发展的主题,即突触可塑性的关键时期,这对于在发育中的大脑中达到兴奋/抑制平衡至关重要。据我们所知,这些发现是描述产前变化的第一个,从而导致产后海马兴奋性/抑制性不平衡发生了变化,这种机制现在被认为是神经认知/神经认知的原因。
1970年代后期我在达尔豪西大学(Dalhousie University)的研究生时,我与研究生Rob Douglas和我们的博士学位一起工作。顾问格雷厄姆·戈达德(Graham Goddard)关于LTP的协会性能在通往齿状回的穿孔途径中。我们发现合作/协会的故事(McNaughton,Douglas和Goddard 1978)已经叙述(McNaughton 2003)。那时,唐纳德·赫布(Donald Hebb)是达尔豪西(Dalhousie)的名誉教授,在2003年的论文结束时,我描述了赫布(Hebb)对他对突触关联性的想法的回应表明,他对我的建议是正确的,如果我对他的互联阶段和阶段相互融合,那么他对我的建议是更重要的。研究记忆的神经基础。
CDKL5 基因突变是导致 CDKL5 缺乏症 (CDD) 的原因,这是一种罕见且严重的神经发育疾病,其特征是早发性癫痫、运动障碍、智力障碍和自闭症特征。CDD 的小鼠模型 Cdkl5 KO 小鼠重现了 CDD 症状的几个方面,有助于突出导致 CDD 神经缺陷的大脑改变。对成年 Cdkl5 KO 小鼠大脑形态发生的研究表明,锥体神经元的树突树枝化和突触连接存在缺陷,海马齿状回细胞减少,以及普遍的小胶质细胞过度激活。然而,目前还没有关于 Cdkl5 KO 幼崽是否存在这些大脑改变以及与成年期相比,这些改变在生命早期阶段的严重程度的研究。更深入地了解出生后早期发育阶段 CDKL5 缺陷大脑将成为进一步验证 CDD 小鼠模型和确定针对大脑发育缺陷的治疗最佳时间窗口的重要里程碑。鉴于此,我们对 7、14、21 和 60 天大的半合子 Cdkl5 KO 雄性 (−/Y) 小鼠的皮质锥体神经元的树突树枝化和棘、皮质兴奋性和抑制性连接、小胶质细胞活化以及海马齿状回颗粒细胞的增殖和存活进行了比较评估。我们发现 Cdkl5−/Y 大脑中的大多数结构改变在 7 天大的幼崽中已经存在,并且不会随着年龄的增长而恶化。相反,Cdkl5 − /Y 和野生型小鼠之间的兴奋性和抑制性终端密度差异会随着年龄而变化,表明存在与年龄相关的皮质兴奋性/抑制性突触失衡。Cdkl5 − /Y 幼崽的特点是新生儿感觉运动反射受损,这证实了大脑缺陷的早熟存在。
在25年前大约在25年前首次提出了人齿状回(DG)的成年海马神经发生(DG)。1成年人类脑中的成年海马神经起源已得到广泛研究,但主要采用免疫组织化学方法,得出了高度不一致的结论。2–9文献中关于人脑中成年海马神经发生的程度的争议可以归因于广泛的因素,包括大脑标本10-12的差异以及用于鉴定用于鉴定抗体的神经源性细胞类型的免疫组织化学方案,用于识别人类Neuurogense的4,13,该协议识别4,13。11这些差异最终导致了关于成年人类海马中标记的不同神经源细胞免疫的结论。例如,在各种免疫组织化学研究中已广泛使用双核(DCX)抗体来表征
与在大脑发育过程中相比,通常认为成年大脑的电路形成是不存在的。然而,对神经系统疾病,成人出生,嫁接和再生神经元以及先天行为的研究表明,成年大脑保留了相当大的轴突生长和电路形成能力(1)。了解成人的基本机制或鉴定出新形式的电路形成将有助于进入健康和疾病中脑电路的组织。海马齿状回是一个大脑区域,可以通常观察到成年人中形成成年人,要么是成人出生的未成熟颗粒细胞(GCS)(GCS)(2)或癫痫相关的局部相关的局部苔藓纤维的整合,因此由成熟的GCS(3)(3)。由成人出生的GC形成的电路实际上与GC在开发过程中形成的电路几乎相同:GCS将其轴突,苔藓纤维,通过Hilus,通过Hilus到同侧CA3区域,并在不同的谷氨酸和GABAEGIC细胞上形成突触