经颅光生物调节(PBM)也称为低水平激光治疗(TLLLT)依赖于使用红色/NIR光刺激,保存和再生细胞和组织。作用机理涉及线粒体(细胞色素C氧化酶)中的光子吸收,以及细胞中的离子通道,导致信号通路的激活,转录因子的上调以及保护基因的表达增加。我们研究了使用将NIR激光点传递到头部的NIR激光点来治疗小鼠创伤性脑损伤(TBI)的PBM。小鼠的记忆和学习改善,齿状回和室内下区域的神经元基因细胞增加,BDNF增加,皮层中的突触发生更多。这些对大脑的高度有益作用表明,TLLT的应用比最初构想的要广泛得多。其他群体研究了中风(动物模型和临床试验),阿尔茨海默氏病,帕金森氏病,抑郁症和健康受试者的认知增强。
冻结是在海马介导的恐惧Engrage重新激活中通常检查的一种防御行为。这些细胞种群如何参与大脑并调节各种环境需求的冻结。为了解决这个问题,我们在雄性小鼠的三种不同背景下,在遗传上重新激活了海马齿状回的恐惧。我们发现,根据发生重新激活的上下文的大小,有差异的光引起的冻结量:在三个上下文中最大的空间限制中,小鼠表现出强大的光引起的冻结,但在最大的情况下没有。然后,我们利用图理论分析来识别在最小和最大的环境中Engram反应期间CFOS表达的脑部范围改变。我们的操纵引起了在对照条件下未观察到的区域间CFOS相关性。此外,在Engram重新激活网络中招募了跨越推定的“恐惧”和“防御”系统的区域。最后,我们将在小环境中的ENGRAM重新激活产生的网络与自然的恐惧记忆检索网络进行了比较。在这里,我们发现了共有的特征,例如模块化组成和集线器区域。通过识别和操纵支持记忆功能的电路及其相应的脑部活动模式,就可以解决介导记忆调节行为状态的能力的系统级生物学机制。
海马是一个复杂的大脑结构,该结构由每个具有不同细胞组织的子场组成。虽然海马子场的体积显示与推理和记忆功能相关的年龄相关变化,但每个子场内的细胞组织与这些功能在整个开发过程中与这些功能相关的程度尚未得到充分了解。我们采用了一种明确的模型测试方法来表征组织微结构的开发及其与2个推理任务的性能的关系,一种需要内存(基于内存的推论),而一种仅需要可感知的可用信息(基于感知的推论)。我们发现,每个子场就其细胞组织都与年龄建立了独特的关系。虽然亚面(子)与年龄显示线性关系,但齿状回(DG),Cornu Ammonis Field 1(Ca1)和Cornu Ammonis子领域2和3(组合; CA2/3)显示了与CA2/3中性别相互作用的非线性轨迹。我们发现DG与基于内存的推理性能有关,并且SUB与基于感知的推理有关。两种关系都与年龄相互作用。结果与海马子场内的细胞组织可能经历不同的发展轨迹,这些轨迹支持整个开发过程中的推论和记忆表现。
在大脑发育过程中,过量突触被修剪(即删除),部分是由小胶质细胞增多症,而突触的失调会导致行为缺陷。已知P2Y 6受体(P2Y 6 R)调节神经元的小胶质细胞吞噬作用,并调节细胞培养和体内突触的小胶质细胞吞噬作用。但是,目前尚不清楚P2Y 6 R是否调节开发过程中的突触修剪。在这里,我们表明,两性的P2Y 6 R KO小鼠大大降低了突触材料的小胶质细胞内在化,在第30天的CD68染色小胶质细胞(P30)中以VGLUT1测量(P30)(P30),表明降低了合成生的小胶质细胞吞噬作用。与此相一致,我们发现P30处海马的体感皮质和CA3区和齿状回的突触密度增加。我们还表明,根据新的位置识别,新颖的对象识别和Y迷宫记忆测试,成年的P2Y 6 R KO小鼠损害了短期和长期空间记忆和与WT小鼠相对的短期和长期识别记忆的损害。总体而言,这表明P2Y 6 R调节发育过程中突触的小胶质细胞吞噬作用,这有助于记忆力。
突触变化在记忆过程中起着重要作用。然而,即使在基础条件下,大脑状态对海马网络中突触反应的调节仍然知之甚少。我们记录了自由活动的雄性大鼠在五条海马通路上诱发的突触反应。我们发现,在齿状回穿通通路 (PP-DG) 突触处,清醒状态下的反应比睡眠状态下的反应要强。在 CA1 的 Schaffer 侧支 (SC-CA1) 突触处,非快速眼动睡眠 (NREM) 状态下的反应比其他状态下的反应要强。在快速眼动睡眠 (REM) 期间,PP-DG 和 SC-CA1 突触处的反应比 NREM 状态下的反应要弱,而穹窿至伏隔核突触处 (Fx-NAc) 处的反应比其他状态下的反应要强。相比之下,穹窿对内侧 PFC 突触 (Fx-PFC) 的反应和穹窿对杏仁核突触 (Fx-Amy) 的反应受警觉状态的调节较弱。延长睡眠时间会导致 PP-DG 和 Fx-Amy 突触发生突触变化,但不会导致其他突触变化。突触反应也与局部振荡有关,并且在 Fx-PFC 和 Fx-NAc 之间高度相关,但在 Fx-Amy 和这些突触之间不相关。这些结果揭示了突触特异性调节可能有助于睡眠-觉醒周期中的记忆巩固。
突触变化在记忆过程中起着重要作用。然而,即使在基础条件下,大脑状态对海马网络中突触反应的调节仍然知之甚少。我们记录了自由活动的雄性大鼠在五条海马通路上诱发的突触反应。我们发现,在齿状回穿通通路 (PP-DG) 突触处,清醒状态下的反应比睡眠状态下的反应要强。在 CA1 的 Schaffer 侧支 (SC-CA1) 突触处,非快速眼动睡眠 (NREM) 状态下的反应比其他状态下的反应要强。在快速眼动睡眠 (REM) 期间,PP-DG 和 SC-CA1 突触处的反应比 NREM 状态下的反应要弱,而穹窿至伏隔核突触处 (Fx-NAc) 处的反应比其他状态下的反应要强。相比之下,穹窿对内侧 PFC 突触 (Fx-PFC) 的反应和穹窿对杏仁核突触 (Fx-Amy) 的反应受警觉状态的调节较弱。延长睡眠时间会导致 PP-DG 和 Fx-Amy 突触发生突触变化,但不会导致其他突触变化。突触反应也与局部振荡有关,并且在 Fx-PFC 和 Fx-NAc 之间高度相关,但在 Fx-Amy 和这些突触之间不相关。这些结果揭示了突触特异性调节可能有助于睡眠-觉醒周期中的记忆巩固。
耳鸣是一种常见的烦人症状,没有有效和接受的治疗。在这项受控的实验研究中,使用光来调节和修复目标组织的光生物调节疗法(PBMT)用于治疗大鼠动物模型中的水杨酸钠(SS)诱导的耳鸣。在这里,PBMT是在涉及耳鸣的外围和中央区域同时进行的。使用客观测试评估了结果,包括对声学惊吓(GPIAS),听觉脑干反应(ABR)和免疫组织化学(IHC)的间隙前脉冲抑制。通过Doublecortin(DCX)蛋白表达检测到由耳鸣引起的有害神经可塑性,这是神经可塑性的已知标记。PBMT参数为808 nm波长,165 mW/cm 2功率密度和99 J/cm 2的能量密度。在耳鸣组中,GPIAS检验的噪声平均差距(GIN)值明显降低,表明发生了诸如耳鸣的额外感知声音,而平均ABR阈值和脑干传递时间(BTT)也显着增加。此外,在细胞核组中观察到了小脑的背侧耳蜗核(DCN),齿状回(DG)和偏瓣叶(PFL)的DCX表达显着增加。在PBMT组中,观察到DG中DG中的ABR阈值和BTT显着下降,ABR阈值和BTT显着降低。根据我们的发现,PBMT有可能用于SS诱导的耳鸣的管理。
功能性超声 (fUS) 是一种新工具,可通过区域监测脑血容量 (CBV) 动态来成像大脑活动。这种创新技术尚未在药理应用和药物开发中充分发挥其潜力。在当前的概念验证研究中,使用药理功能性超声 (pharmaco-fUS) 在麻醉大鼠中评估了阿托西汀 (ATX) 的影响,阿托西汀是一种强效去甲肾上腺素再摄取抑制剂,是一种用于治疗注意力缺陷多动障碍的非兴奋剂治疗药物,剂量不断增加 (0.3、1 和 3 mg/kg)。使用感兴趣区域 (CBV 和功能连接的急性变化) 或基于像素 (一般线性建模和独立成分分析) 的分析,我们在此证明 ATX 在视觉皮层、齿状回和丘脑中持续表现出血流动力学效应,尤其是视觉区域,例如丘脑后外侧核和膝状核 (LGN)。 ATX 效应的时间曲线与剂量有关,最高剂量时 CBV 增加最快,中等剂量时 CBV 增加时间较长。规范使用药物融合超声可以提高我们对药物在脑内作用机制的理解,并可能成为神经系统疾病药物开发的新一步。
嘻哈pocampus的齿状回(DG)的亚颗粒区(SGZ)是哺乳动物大脑的两个区域之一,在成年期间,在正常生理条件下,在正常生理条件下以显着的速率产生新的神经元之一。DG和成人神经元与关键大脑功能有关,例如学习,记忆和情绪调节[1-3]。每个成年人的DG每天都融合了700个成年神经元,称为成人颗粒细胞(GC),每天都融合到其颗粒细胞层[4]。DG在一生中产生和结合新生神经元的这种能力证明了海马在调节现有神经回路并有助于海马可塑性的能力。成人出生的GCS通过严格调节的过程称为成人河马校园神经发生(AHN),源自居民成人神经茎/祖细胞(ANSPC),范围从增殖,ANSPC的扩增和维持到成熟和不成熟神经元的成熟和突触整合[5,6]。最近的证据表明,在成年大脑中发现的ANSPC是通过持续形成DG的连续发育过程源自胚胎神经发生的[7,8]。实现此目的的一种方法是使用多级调节,其中固有和外在提示都融合以调节ANSPC行为。重要的调节机制是对基因表达的表观遗传控制,它能够根据环境信号在多个级别调节ANSPC行为。
主要抑郁症(MDD)影响全球人口的21%。长期暴露于压力状况可能会影响MDD和相关认知障碍的发作,进展和生化改变。表现为MDD的患者主要用几种抗抑郁药治疗。一个是依他普兰,一种选择性5-羟色胺再摄取抑制剂。但是,是否减轻慢性应激诱导的认知缺陷尚不清楚。本研究使大鼠暴露于慢性固定应力(CIS)2小时/天10天。然后,依他普兰(5 mg和10 mg/kg I.P.)进行了14天的施用,并进行了高架迷宫,开放式测试,强迫游泳测试,蔗糖偏好测试和径向臂迷宫任务。不同的动物用于评估海马,额叶皮层和杏仁核的血管内皮生长因子(VEGF),神经胶质原纤维酸性蛋白(GFAP)和脑衍生的神经营养因子(BDNF)水平。我们的数据表明,依依斯普兰显着保护顺式诱导的空间学习和记忆缺陷,行为抑郁和焦虑。此外,依他普兰(10 mg/kg)显示出齿状回和海马萎缩的显着恢复。此外,分子标记物BDNF,VEGF和GFAP表达的恢复也与依他普兰的神经保护机制有关。我们的结果表明,EsciatlorPam通过调节神经营养因素和星形胶质细胞标记来恢复压力大鼠的认知障碍。