一项神经科学的研究生课程,不列颠哥伦比亚大学,温哥华,加拿大(加拿大)B Djavad Mowafaghian脑健康中心,不列颠哥伦比亚大学,温哥华大学(BC)加拿大C坎贝尔家庭心理健康研究所,加拿大canca
箭头分别标记2,1(V bial = -2.0 V / -1.2 V,i = -50 pa / -200 pa)。c,来自282
York,NY。 6英国格拉斯哥大学卫生与福祉学院,英国格拉斯哥大学7 7号心理学系,纽约州纽约州纽约州纽约州精神病学研究院首尔大学北国立大学,纽约州纽约州纽约州纽约州纽约州9号萨克勒发展研究所的神经科学部,York,NY。6英国格拉斯哥大学卫生与福祉学院,英国格拉斯哥大学7 7号心理学系,纽约州纽约州纽约州纽约州精神病学研究院首尔大学北国立大学,纽约州纽约州纽约州纽约州纽约州9号萨克勒发展研究所的神经科学部,
宫内生长限制(IUGR)使多达10%的人妊娠复杂化,这是围产期发病率和死亡率早产后的第二个主要原因。发达国家中最常见的IUGR病因是子宫核心不足(UPI)。对于IUGR怀孕的幸存者,长期研究一致地表明,认知受损的风险增加了,包括学习和记忆力。其中,只有少数人的研究强调了性别差异,男性和女性对不同障碍的敏感性不同。此外,IUGR会影响白物质和灰质,从大脑磁共振成像中得出了很好的确定。海马,由齿状回(DG)和Cornu氨(CA)子区域组成,是对学习和记忆至关重要的重要灰质结构,尤其容易受到UPI的慢性低氧缺血作用的影响。海马体积减少是学习和记忆降低的有力预测指标。在动物模型中还可以看到DG和CA中的神经元数量减少,并且DG和CA中的树突状和轴突形态减弱。在很大程度上没有探索的是产前变化,使iugr后代易于产后学习和记忆递减。缺乏知识将继续阻碍未来治疗以改善学习和记忆的设计。在这篇综述中,我们将首先介绍有关IUGR后神经后遗症的临床敏感性和人类流行病学数据。研究,我们将遵循使用实验室的IUGR小鼠模型(模拟人IUGR表型)生成的数据,以在胚胎海马DG神经发生中的细胞和分子改变下进行剖析。我们最后将提出一个新的关于产后神经元发展的主题,即突触可塑性的关键时期,这对于在发育中的大脑中达到兴奋/抑制平衡至关重要。据我们所知,这些发现是描述产前变化的第一个,从而导致产后海马兴奋性/抑制性不平衡发生了变化,这种机制现在被认为是神经认知/神经认知的原因。
海马是认知的大脑区域。人类SOX2转录因子中的突变会导致神经发育缺陷,导致智障和癫痫发作,以及海马发育不良。我们在小鼠中产生了一系列等位基因SOX2条件突变,在不同的发育阶段删除SOX2。SOX2晚期缺失(来自E11.5,通过Nestin-Cre)仅影响产后海马发育;早期的缺失(来自E10.5,EMX1-CRE)显着降低了齿状回(DG),最早的缺失(来自E9.5,FOXG1-CRE)会导致剧烈的异常,几乎完全没有DG。我们识别一组功能相互连接的基因(Gli3,Wnt3a,cxcr4,p73和tbr2),已知在海马胚胎发生中起着重要作用,在SOX2早期突变体中被下调,以及(Gli3和cxcr4)直接通过SOX2键入SOX2;它们的下调提供了导致缺陷的合理分子机制。对EMX1-CRE小鼠模型的电生理研究显示CA1和CA3区域的兴奋性传播改变了。对EMX1-CRE小鼠模型的电生理研究显示CA1和CA3区域的兴奋性传播改变了。
1 美国约翰霍普金斯大学医学院分子生物学和遗传学系;2 美国约翰霍普金斯大学医学院精神病学和行为科学系;3 美国纽约州立大学下州医学中心罗伯特 F. 弗奇戈特行为神经科学中心生理学和药理学系;4 挪威科技大学卡夫利系统神经科学研究所和神经计算中心,挪威特隆赫姆;5 美国约翰霍普金斯大学医学院霍华德休斯医学研究所;6 美国约翰霍普金斯大学医学院放射学和放射科学系;7 美国约翰霍普金斯大学医学院神经科学系;8 美国约翰霍普金斯大学医学院遗传医学系; 9 纽约大学神经科学中心,纽约,美国;10 纽约大学朗格尼医学中心神经科学研究所,纽约,美国;11 约翰霍普金斯大学医学院眼科系,巴尔的摩,美国