摘要:由于特性和维度的独特组合,研究了纳米级的各种应用,研究了过渡金属二分元。对于许多预期的应用,热传导起着重要作用。同时,这些材料通常包含相对较大的点缺陷。在这里,我们对内在和选择外部缺陷对MOS 2和WS 2单层的晶格导热率的影响进行系统分析。我们将Boltzmann传输理论与Green基于功能的T -Matrix方法相结合,以计算散射速率。缺陷配置的力常数是通过回归方法从密度功能理论计算获得的,这使我们能够以中等的计算成本采样相当大的缺陷,并系统地强制执行翻译和旋转声音总和规则。计算出的晶格导热率与MOS 2和WS 2的热传输和缺陷浓度的实验数据定量一致。至关重要的是,这表明在实验上观察到的晶格热导率的1/ t温度依赖性的强偏差可以通过点缺陷的存在来充分说明。我们进一步预测了固有缺陷的散射强度,以减少两种材料中两种材料中序列Vmo≈v2s => V 2S => v 2s> v s> s AD,而外部(ADATOM)缺陷的散射速率随着质量的增加而降低,以使li AD AD aD aD aD aD aD aD> k aD> k AD。与较早的工作相比,我们发现固有和外在的原子质都是相对较弱的散射体。我们将这种差异归因于翻译和旋转声音总规则的处理,如果不执行,则可能导致零频率限制的虚假贡献。
图 1. 在具有稀释 Cs 吸附原子的 CsV 3 Sb 5 的 Sb 表面构建 Cr-Cs 双原子转子。 (a) 双原子转子形成示意图。 Cr/Fe 原子(用黄色球标记)作为单个原子分布并被 Cs 原子(用红色球标记)捕获,从而在 kagome 超导体 CsV 3 Sb 5 的 Sb 表面形成双原子转子。 (b) STM 图像显示具有稀释 Cs 原子的 CsV 3 Sb 5 晶体的 Sb 表面。 Cr-Cs 双原子转子用红色虚线圆圈突出显示(V s =-500 mV,I t =3 nA)。 (c) - (d) 尖端诱导 Cr-Cs 转子分离为 Cr 原子和 Cs 原子。分离前,Cr原子围绕Cs原子旋转,形成具有不稳定环带的Cr-Cs转子(c)。分离后,Cs和Cr原子的形貌清晰可见(d)。V s =-500 mV,I t =3 nA。(e),左:(c)中的旋转速率图ω(r),显示Cr原子沿圆形轨道绕Cs旋转(V =-600 mV,I =0.5 nA)。右:(c)中Cr-Cs转子环带位置(红十字标记)测得的I-t谱,显示出具有几个离散值的阶梯状特征(V =-250 mV,I =0.9 nA)。(f),CsV 3 Sb 5 的Sb表面Cr-Cs双原子转子的原子分辨STM形貌。图像中叠加了原子模型和 Sb 蜂窝晶格(白色虚线六边形),显示 Cr 原子围绕 Cs 吸附原子旋转(V s =-500 mV,I t =3 nA)。
Casimir效应[1,2]是由于量子真空波动引起的中性物体的相互作用。对高级材料之间Casimir相互作用的研究是一个新的和有希望的研究领域[3]。一方面,这些材料的异常电子特性会对Casimir力产生有趣的影响。另一方面,Casimir实验的提高质量使它们成为探索材料本身的有用工具。dirac材料(在足够低的能量下遵守二级式dirac-type方程)为我们提供了一个量子场理论与凝结物质之间相互作用的示例。石墨烯是该家族的重要代表[4,5]。处理狄拉克材料是很自然的,可以通过清理的极化张量来描述与电磁场的相互作用,并使用此张量来计算Casimir相互作用。在石墨烯的情况下,在[6]和[7]中使用了这种方法,分别在零和非零温度下使用。值得注意的是,石墨烯的Casimir相互作用的极化张量方法是实验中唯一证实的方法[8-11]。所有真实材料都包含杂质。特定形式的杂质可能会有所不同。杂质是指破坏原始材料清洁度的一般形式。在评论[12-15]中可以找到石墨烯样材料中杂质和缺陷的分类。石墨烯的二维性质减少了可能的缺陷和杂质类型的数量。因此,我们不会尝试关键是,它在居住在石墨烯表面外面的ADATOM或替代杂质在能量上有利。可能会被充电[16-18],磁[15],同位素[19,20],拓扑结构(例如五角大州和七肠)[13,21],或者是缺陷和生长诱发的缺陷等缺陷[22]和群集缺陷[12]。有意的杂质通常称为掺杂剂,而杂质本身可以是故意的,也是无意的(意外)。掺杂用于改变材料的物理或化学特性。石墨烯中的杂质[23,24]可能会将狄拉克附近的线性分散体转换为二次的杂质,这表示杂质引起的质量间隙的外观。描述杂质及其对材料物理特性的影响有不同的方法。常见是具有射击或远程电位[13]和散射方法[25,26]的紧密结合模型。使用石墨烯中的各种杂质类型,我们需要一个良好的模型,该模型可以捕获杂质的通用特性,同时非常简单地用于计算偏振张量。一种成功描述杂质的方法在于将准粒子的传播器添加到描述杂质散射率的参数γ。换句话说,γ是fermion自能的虚构部分。在[27 - 31]中的外部磁场存在大多数情况下,这种描述已应用于石墨烯。我们将自己限制在零温度和消失的化学潜力的情况下。[31]的计算与石墨烯中巨型法拉第旋转的测量[32]非常吻合。原则上γ可以取决于频率,尽管保持频率似乎是一个良好的近似值。在这项工作中,我们忽略了杂质的另一个作用,这是它们产生非零化学势µ的能力。在[10,11]中考虑了石墨烯表面上原子(主要是钠)的一种特殊形式的杂质(主要是钠)及其对Casimir力的影响。根据这些论文,这种杂质会导致石墨烯的质量间隙和非零化学潜力,而不是通过散射速率γ描述的杂质散射的出现。本文的主要目标是研究杂质散射速率γ对石墨烯与理想金属之间Casimir相互作用以及两个石墨烯片之间的影响。这是一个简化的设置。