CRISPR–Cas9 方法已被用于在植物中产生随机插入和缺失、大量缺失、短序列的靶向插入或替换以及精确的碱基变化 1 – 7 。然而,用于功能基因组学研究和作物性状改良所需的长序列和基因的靶向插入或替换的通用方法很少,并且很大程度上取决于选择标记的使用 8 – 11 。基于在哺乳动物细胞中开发的方法 12 ,我们利用化学修饰的供体 DNA 和 CRISPR–Cas9 将长达 2,049 个碱基对 (bp) 的序列(包括增强子和启动子)插入水稻基因组,效率为 25%。我们还报道了一种依赖于同源性定向修复、化学修饰的供体 DNA 和目标位点串联重复序列的基因替换方法,以 6.1% 的效率实现了长达 130 bp 的序列的替换。在哺乳动物细胞中,使用平端的、5'-磷酸化的双链寡脱氧核苷酸 (dsODN),在两条 DNA 链的 5' 和 3' 端带有两个硫代磷酸酯键,可导致寡脱氧核苷酸 12 的强有力靶向整合。硫代磷酸酯键修饰旨在稳定细胞中的寡核苷酸,而 5'-磷酸化可促进非同源末端连接 (NHEJ),这是修复双链断裂 (DSB) 的主要途径,尤其是在培养细胞中。在用于再生小植株的培养植物细胞中,例如水稻愈伤组织细胞,NHEJ 也是主要的 DSB 修复途径 10,13。因此,这种类型的修饰 dsODN 可能会提高植物细胞中靶向插入的效率。为了验证这一假设,从水稻ADH1(酒精脱氢酶1)14 的5′非翻译区(UTR)中取出一个60bp的翻译增强子(ADHE)作为供体DNA,插入水稻的主要耐盐基因座SKC1(补充表1)15。如图1a所示,体外合成的ADHE供体DNA两侧有两个带有硫代磷酸酯键和5′-磷酸化修饰的核苷酸(ADHE;见补充图1b)。为了与传统供体DNA进行比较,还合成了未修饰的单链和双链寡脱氧核苷酸(ssADHE和dsADHE),带有三核苷酸多态性以供检测(图1b和补充图1b)。设计了一个针对 5 ʹ UTR 的单向导 RNA (sgRNA) (sgRNA-1),并将其构建到 CRISPR–Cas9 载体 pCBSG032 中(图 1c 和补充图 1a)。将三个供体 DNA 寡核苷酸按等摩尔比例混合,然后通过粒子轰击法将其与 CRISPR–Cas9 质粒 DNA (sgRNA-1) 一起引入中花 11 (ZH11) 水稻愈伤组织中。
Lohmann提供多功能的胶带解决方案和用于锂离子电池的热和电气管理的高精度模切。在锂离子电池的整个生命周期内的安全性,可靠性和效率,因此粘合关节至关重要。Lohmann Adhe Sive Tape Solutions提供了机械固化方法的更灵活,更容易的替代品,与液体键合相比具有简单清洁的组件。在电池制造过程中使用多功能磁带解决方案结合了多个好处:它们提供了立即且牢固的粘附,从而快速处理并仅在一种产品中添加功能。例如,在电动汽车电池中,我们的磁带不仅有效地将电池连接到冷却系统,还可以通过实现出色的接地或作为层压板的一部分来防止短路的敏感组件,从而有助于防止火。此外,Lohmann的单面和双面粘合剂磁带范围接管了其他功能,例如Mal Plunaway保护,密封,缓冲,电气和热绝缘,电导率或EMI屏蔽等功能。投资组合提供了满足UL 94.
摘要。胆管癌的发病率在过去 50 年中稳步上升,但由于该疾病对非手术治疗干预具有很强的抵抗力,因此存活率仍然很低。胆管癌中表达癌症干细胞标志物,表明它们在该疾病的生理学中起着重要作用。癌症干细胞通常与肿瘤复发和对多种治疗策略的获得性耐药性有关,包括化疗、放疗和免疫检查点抑制剂。根除癌症干细胞的新型靶向疗法可能有助于克服胆管癌的治疗耐药性并降低复发率。先前已记录了几种信号通路来调节癌症干细胞的发展和存活,包括 Notch、janus 激酶/STAT、Hippo/yes 相关蛋白 1 (YAP1)、Wnt 和 Hedgehog 信号。尽管已经开发出针对这些通路的药物,但临床试验中仅报告了适度的效果。 Hippo/YAP1 信号通路因参与上皮间质转化、细胞粘附、器官形成和肿瘤发生而成为癌症干细胞研究领域的前沿。本文回顾了胆管癌癌症干细胞研究的最新发现,并讨论了该疾病中癌症干细胞的潜在治疗靶向性。