AAH 绝对水平精度 B-1 AAV 绝对垂直精度 B-1 ACC 精度类别 B-1 AE1 绝对椭球高度精度(米)-高端(WGS84) B-1 AE2 绝对椭球高度精度(米)-低端(WGS84) B-1 AEH 绝对椭球高度精度(米)(WGS84) B-2 AFA 可用设施 B-2 AGC 拦阻装置类别 B-3 AHA 绝对水平精度(米) B-3 AHC 相关水文类别 B-3 AHO 障碍物离地高度精度 B-3 AIA 空域识别属性 B-3 ALA 绝对纬度精度(米)(WGS84) B-4 ALC 飞机载荷等级 B-4 ALN 航路段长度 B-4 ALO 绝对经度精度(米) (WGS84) B-4 AO1 方位角,分辨率大于 1 度 B-4 AO2 绝对正高精度(米)-高端(WGS84) B-4 AO3 绝对正高精度(米)-低端(WGS84) B-4 AOH 绝对正高精度(米) (WGS84) B-5 AOO 方位角 B-5 APT 机场类型 B-5 ARA 区域覆盖属性 B-5 ARE 分辨率大于 1 平方米的区域 B-6 ARH 区域覆盖属性(公顷) B-6 ARR 雷达反射器角度 B-6 ASS 进近表面部分编号 B-6 ATC 渡槽类型类别 B-6 ATL ATS 航线级别 B-7 ATN 助航设备 B-7 AUA ATS 使用属性 B-7 AUB 空域使用边界 B-9 AUL 空域使用限制B-10 AUR 空域使用路线 B-11 AUS 空域/设施运行时间 B-12 AV1
版权页 版权所有 2023 国际药学联合会 (FIP) 国际药学联合会 (FIP) Andries Bickerweg 5 2517 JP 海牙 荷兰 www.fip.org 保留所有权利。未经引用来源,不得将本出版物的任何部分存储在任何检索系统中或以任何形式或手段(电子、机械、录音或其他方式)转录。FIP 对因使用本报告中的任何数据和信息而造成的任何损失概不负责。已采取一切措施确保本报告中提供的数据和信息的准确性。作者 Brett Simmonds,FIP 专业监管机构咨询小组 2022-2023 年主席及澳大利亚药学委员会 Ronald Guse,FIP 专业监管机构咨询小组 2020-2022 年前任主席,加拿大 编辑 Al Carter,美国国家药学委员会协会 Carmen Catizone,美国国家药学委员会协会 Adele Fifield,加拿大国家药学监管机构协会 Hélène Leblanc,法国药剂师协会,法国 Luís Lourenço,国际药学联合会,葡萄牙 Marie-Hélène Morzadec,法国药剂师协会,法国 Anastasia Shiamptanis,加拿大国家药学监管机构协会 Andi Shirtcliffe,新西兰卫生部 Leonor Soares,葡萄牙药学会,葡萄牙 Carine Wolf-Thal,法国药剂师协会,法国 编辑支持Gonçalo Sousa Pinto,FIP 实践发展与转型负责人 Rúben Viegas,FIP 实践发展与转型项目协调员 推荐引文 国际药学联合会 (FIP)。药房主导的疫苗接种服务:监管自我评估和实施工具。海牙:国际药学联合会;2023 年。封面图片 © Cecilie_Arcurs | iStockphotos.com
圣塔伦 圣塔伦地区单位地址:Av. Moaçara,s/n°,Floresta 街区 - Santarém/PA,邮政编码 68.025-740。区域经理:Stael Rejane Sousa da Silva。电话:55 93 9903-2911 Altamira Altamira 地区单位地址:Otaviano Santos 街,2298 号,Sudam I 街区,Altamira/PA。邮政编码 68371-288 区域经理:Elizabeth Christina Borges Capatti 电话:55 93 9172-9692 阿巴埃图巴 阿巴埃图巴高级中心地址:Pedro Pinho Paes 街 410 号,Centro 街区 - 阿巴埃图巴/PA - 邮政编码 68.440-000。经理:Bernardo Antonio Maués 电话:55 93 9188-6962 布拉干萨布拉干萨高级中心 地址:Rua Dr. Justo Chermont 550 号 - Centro 街区 - 布拉干萨/PA - 邮政编码 60.800-000。经理:Carlos Fernando Ribeiro Da Costa 电话:55 91 98299-3127 伊泰图巴伊泰图巴高级中心 地址:Rod. Transamazônica,Km 05,墓地旁,机场附近 - Itaituba/PA - CEP 68.182-180。经理:Camille Rafaela Oliveira Dos Santos。电话:55 91 98443-0020 Paragominas 高级中心地址:Av. Portugal, s/n°, Module 2, Cidade Nova 街区 - Paragominas/PA- 邮政编码 66.625.500。经理:Aloizio Junior Paragominas。电话:55 91 98315-2073
该文件是欧洲议会工业,研究和能源委员会(ITRE)要求的。作者Michel Armand博士,CIC Energigune Nagore Ortiz-Vitoriano博士,CIC Energigune,Ikerbasque,Ikerbasque,Javier Olarte博士Javier Olarte博士,CIC Energigune,Raquel Ferret博士,Cic EnergiguneAloñaAloñaAloñaSalazarsalazar salazar salazar salazar salazar salazar salazar salazar salazar salazar saligune of Matteo siperational promantion sipsion sissist sissist sissist sissist interain:编辑政策部门提供内部和外部专业知识,以支持欧洲议会委员会和其他议会机构塑造立法并对欧盟内部政策进行民主审查。To contact the Policy Department or to subscribe for email alert updates, please write to: Policy Department for Economic, Scientific and Quality of Life Policies European Parliament L-2929 - Luxembourg Email: Poldep-Economy-Science@ep.europa.eu Manuscript completed: January 2023 Date of publication: January 2023 © European Union, 2023 This document is available on the internet at: http://www.europarl.europa.eu/supporting-analyses免责声明和版权本文档中表达的意见是作者的唯一责任,不一定代表欧洲议会的官方立场。为非商业目的的复制和翻译被授权,只要确认来源并给予欧洲议会事先通知并发送了副本。©Adobe Stock许可下使用的封面图像。出于引用目的,应将出版物引用为:Armand M.,Ortiz-Vitoriano,N.,Olarte,J.,Salazar,A.卢森堡。
具有竹节粒结构、顶部覆盖 Al 3 Ti 层并以 W 柱终止的 Al(Cu) 细线是 Si 集成电路中越来越常见的一类互连线。这些线易受跨晶电迁移引起的故障影响。电迁移引起的应力演变可以用一维扩散-漂移方程建模,该方程的解需要了解传输参数。通过开发和执行使用在氧化 Si 基板上制造的单晶 Al 互连线的实验,明确地确定了 Al 中 Al 和 Cu 的跨晶扩散和电迁移特性。在顶部覆盖多晶 Al 3 Ti 覆盖层的钝化 Al 单晶线(2.0 μm 宽,0.4 μm 厚)上进行了加速电迁移寿命测试。覆盖层由 Al 与 Ti 覆盖层的反应形成。电迁移引起失效的激活能确定为 0.94±0.05 eV。以前对没有 Al 3 Ti 覆盖层的 Al 单晶的研究得出的激活能为 0.98±0.2 eV,寿命相似。结论是,Al 3 Ti 覆盖层不会影响跨晶电迁移的动力学和机制。此外,这些结果表明,单晶 Al 互连线电迁移引起失效的限速机制不是扩散,或者令人惊讶的是,Al 沿 Al/Al 3 Ti 界面的扩散率大约等于或低于 Al 沿 Al/AlO 界面的扩散率。还通过实验研究了 Cu 在单晶 Al 线中的扩散和电迁移特性。测试结构由平行线(5.0 μm 宽,0.4 μm 厚)组成,交替线终止于共用接触垫。铜被局部添加到所有线的相同区域,并通过分析 Cu 的浓度分布来表征温度和电流密度的影响
沸石是微孔晶体,这些晶体是由四面体SiO 4和Alo 4物种通过共享O原子相互联系的,它们在吸附,分离,离子交换和异构固体阳性催化中表现出了显着的应用前景[1]。通常,通过异态替代物,可以将Si和Al原子框架的一部分取代,例如Ti,Sn,Ge,Zr,Zr,B,P,V和Ga,导致杂原子沸石或金属硅酸盐[2-4]。Among these heteroatomic zeolites, titanosilicate is the most representative one, and it can catalyze diverse selective oxidation reactions, such as alkene epoxidation, aldehyde or ketone ammoxidation, benzene or phenol hydroxylation, 1,4-dioxane oxidation, selective oxidation of pyridine derivatives, and oxidation desulfurization [5-9]以及酸催化的反应,例如环氧化物的铃声反应[10-12],乙二胺冷凝[13]和贝克曼的氧电[14](如图1.1所示)。此外,钛硅酸盐的发现扩大了沸石的应用范围,因为异质催化剂从酸催化到氧化还原场。几项评论和专着提出了对合成和催化应用中钛硅酸盐的机会和挑战[3-9,15-18]。如图1.2所示,从1983年到2023年,与钛质有关的年度出版物数量迅速增加,在过去的十年中,这一数字一直保持在200–350。值得注意的是,钛硅酸盐可以根据其质地性能和孔径分为微孔,介孔和静脉型类型。其中,具有孤立的四面体Ti物种的微孔钛硅酸盐具有尺寸<2 nm的毛孔,其中包括中小孔和中孔的钛硅酸盐沸石,带有8或10元的环(MR),12 MR大孔沸石,大孔沸石,超大型孔的杂物和超大型孔的Zeolites和≥14mms。在具有三个字母代码的255个订购的沸石框架结构和国际沸石协会结构委员会(IZA)认可的部分无序的沸石结构中,28个结构
传记安娜·帕塞托(Anna Pasetto)是一位具有丰富的免疫学家和分子生物技术学家,在癌症研究和细胞疗法方面具有丰富的经验。出生于1982年4月13日,她目前担任多个关键学术和研究角色,包括奥斯陆大学医院ACT中心主任,奥斯陆大学副教授,以及瑞典Karolinska Institutet的研究专家。在这些角色中,Pasetto博士致力于推进免疫疗法领域,专注于治疗癌症和原发性免疫缺陷的尖端方法。Pasetto博士的学术旅程始于博洛尼亚大学,在那里她完成了学士学位和分子生物技术硕士学位。 然后她获得了博士学位。著名的Karolinska Institutet医学科学学院,2012年毕业。 在博士生研究之后,她加入了美国国家癌症研究所(NCI),在那里她担任博士后研究员,后来担任研究人员,直到2018年。。Pasetto博士的学术旅程始于博洛尼亚大学,在那里她完成了学士学位和分子生物技术硕士学位。然后她获得了博士学位。著名的Karolinska Institutet医学科学学院,2012年毕业。在博士生研究之后,她加入了美国国家癌症研究所(NCI),在那里她担任博士后研究员,后来担任研究人员,直到2018年。她在NCI的研究为我们对癌症T细胞疗法的理解做出了重大贡献。在美国任职后,帕塞托博士回到欧洲领导Karolinska Institutet的GMP之前的设施,在那里她担任董事总经理,同时还负责担任助理教授的责任。在2022年,她过渡到了目前在挪威和瑞典的职位,在那里她继续在免疫疗法和蜂窝疗法中推动创新。Pasetto博士也对教学和指导充满热情。她曾在Karolinska Institutet和巴西的GonçaloMoniz研究所在免疫学上讲授免疫学,并与下一代科学家分享了她的专业知识。在奥斯陆大学,她是创新学校中的导师,在那里她指导学生开发新颖的生物医学解决方案。博士学位主管Pasetto博士的学生负责监督高级免疫学技术的几项研究项目,包括基于CRISPR的疗法和T细胞工程。她的工作是将基础科学转化为临床应用的最前沿,目的是为患者开发更有效的疗法。
ID N . 11300 – 个人研究工程师(意大利语:T ECNOLOGO)– 三级 2012 年 12 月/至今 国家研究委员会 (CNR) - 微电子与微系统研究所 (IMM),Agrate Brianza Unit,Via Olivetti 2, 20864, Agrate Brianza (MB),意大利 公共机构常设研究工程师(意大利语:Tecnologo)。技术领域:支持研究。主题:科学仪器和流程管理。 (Bando n. 364/114,Prot. AMMCNT CNR n.79896 28/12/2012;Prot. AMMCNT CNR n.8704 13/02/2013;Prot. IMM CNR n.769 31/01/2013)主要研究课题:I – 2D 材料(过渡金属二硫属化物,TMD)的各向异性工程:通过化学方法生长并主要通过 X 射线光电子能谱和拉曼光谱进行表征;目标应用在纳米电子学、光子学、光电子学、催化领域。 II – 通过 X 射线散射、X 射线光发射光谱和离子束技术(XRR、XRD、XPS、ToF-SIMS)对薄膜和多层膜的结构和化学物理特性进行表征,以便将其集成为双极 CMOS-DMOS(BCD)技术平台中的大电容器。III – (1)具有垂直磁各向异性的铁磁材料(PMA)和(2)非磁性材料,用于作为磁性结和自旋注入/过滤器中的隧道屏障;(3)稀磁氧化物(DMO)。研究结构和化学性质与磁性和磁输运性质之间的相关性。通过 X 射线散射(包括同步光)、X 射线光发射和离子束技术(XRR、XRD、XPS、ToF-SIMS、XRMS)对薄膜和多层膜的结构和化学物理进行表征,例如:(1)铁磁材料(Co、Fe、CoFe、CoFeB、Co/Ni); (2) 非磁性材料(即 MgO、AlO x );(3) 稀磁氧化物(Fe、Ni 掺杂的 ZrO 2 )。IV – 通过 X 射线散射、X 射线光发射和离子束技术(XRR、XRD、XPS、ToF-SIMS)研究高介电常数电介质或相变合金的 CMOS 兼容性在工艺集成中的热稳定性,以用于新兴的非挥发性存储器(TANOS、RRAM、PCM、MRAM)。V – 通过 X 射线散射(主要是 XRD)对先进 MEMS 设备中集成的压电材料进行表征。
步骤/措施 继续 不继续 不适用 1. 参谋部审查并向空域控制机构(ACA)提交下属单位的空域使用申请。 2. 参谋部通过以下方式识别和解决影响计划外事件/更高优先级任务的空域使用的情况: a. 根据需要协助重新定向飞机。 b. 协调与当前作战整合小组的行动以:(1)在必要时指挥炮兵转移或停止射击,以执行计划外的高优先级任务。 (2)在必要时指挥防空导弹防御武器进入保持状态,以执行更高优先级的任务。 (3)在完成后根据需要指挥系统将武器锁定或释放。 (4)根据空中作战指令,指挥当前使用空域的飞机选择替代路线,以便使用该空域执行更高优先级的任务。 3. 参谋部将影响空域使用者的控制变化、限制措施、武器控制状态、交战规则和战斗识别标准分发给下属空域节点。 4. 参谋人员与火力支援部队和空中支援作战中心 (ASOC) 以及空中联络官 (ALO) 协调,消除空域冲突,以便立即满足近距离空中支援 (CAS) 请求。5. 参谋人员监控和增援陆军空中交通服务 (ATS) 单位,为在受支援单位作战区域内飞行的飞机和执行战术行动的单位提供协助。6. 参谋人员协调 ATS 支持,包括:a. 运营配备机场监视雷达进近和精密进近雷达的全仪表机场。b. 为禁区、过渡区和控制区开发特殊用途空域。c. 为陆军机场提供监督、技术专长和标准化。d. 为管制员的培训和认证提供质量保证。7. 参谋人员与空中支援作战官一起监控行动,以便立即解决与预先计划和立即进行的 CAS 的冲突。8. 参谋人员与战术空中控制小组协调,以促进近距离空中支援任务的请求和控制,从而支持地面行动。 9. 参谋人员与空域分队一起维护当前信息,并将下列信息直接分发给相应的空域用户和 ATS 设施:a. 化学、生物、放射性、核和高当量爆炸物。b. 野战炮兵。c. 天气。d. 影响空域控制的空中威胁和空中作战。
在二维电子系统(2DE)中发现了这种丰富行为的显着示例,该系统在带绝缘子3(LAO)和SRTIO 3(STO)之间形成的界面形成。[3]在基于氧化物的2DE中观察到了许多有趣的物理现象,包括超导性,[4]一种有趣的磁反应,[5,6]和非常规的RashBA效应。[7–9]基于该系统的不同设备已被证明,首先通过编写原子力显微镜的尖端编写结构来避免与氧化物的光刻图案相关的固有困难。[10]虽然最终克服了这些,并且证明了具有电子束光刻术的电场效应的有效制造[11] [11]在LAO/STO中实现高迁移率2DE所需的高增长温度仍需为设备制造带来挑战。[12]可以通过在室温下沉积Al层来形成2DE的演示,已经为在设备中实现基于STO的2DS的新观点开辟了新的观点。[13]最近观察到基于Al/sto 2DES的设备中非常大的旋转转换效应,突出了该系统对氧化物电子产品的潜力。[14]同样的工作还表明,2DES的Complex频段结构对于其属性和设备性能至关重要。现在,在最常见的晶体学方向上,通过角度分辨光学光谱(ARPE)对Sto裸露面的2DE的电子结构已经进行了很好的研究。[15–20]该2DE是通过引入氧气空位来形成的,这些空位是通过在UHV条件下用高能量光子的辐照在裸露表面产生的。[21]相同的机制允许在其他氧化物(如KTAO 3,SNO 2和TIO 2)中稳定表面2DES [22-26],并且与Ar Ion bombard bombard的金属STO表面层不同。[27,28]铝在UHV裸露表面上的铝沉积以类似的方式产生了2DE。在这种情况下,由于有效的氧化还原反应而产生了氧空位,而Al膜从底物中泵入氧气,而氧气则将其氧化为绝缘Alo X。[13],由于诱导此Al/sto 2DE仅需要很少的Al,因此表面敏感的ARPES测量也可以访问。正如预期的那样,通过两种方法获得的2DE的电子结构相似,因为两个系统都出现了氧气空位