每个 SiN PIC 都包含一组嵌入波导中的 TOPM,以便调整和平衡 AMZI 结构。这些加热器控制干涉仪臂的相对相位,以及结点处马赫-曾德尔干涉仪 (MZI) 结构的分光比。这些加热器由源测量单元 (SMU) 阵列控制,这些单元将每个加热器设置为恒定电压。对于每个 AMZI 结构,第一个 MZI 的分光比设置为在第二个 MZI 处产生相等的会聚脉冲。这要求沿 AMZI 的长臂发送更高的强度,而长臂处的光学损耗略高。第二个 MZI 的分光比设置为 50:50。可以通过使用快速光电二极管或 SNSPD 测量来自脉冲光输入信号的 AMZI 的两个输出来确认这些条件。然后调整 Bob AMZI 短臂上的相位加热器,直到相位偏移与 Alice AMZI 产生的相位偏移对齐。一旦为每个 AMZI PIC 找到最佳工作电压,它们就不需要在工作期间进行调整。我们预计芯片的温度稳定性极大地促进了加热器设定点的稳定性。
摘要:传统温度检测在传感精度和响应时间方面存在局限性,而基于热光效应的芯片级光电传感器可以提高测量灵敏度并降低成本。本文介绍了基于多晶硅(p-Si)波导的片上温度传感器,展示了双微环谐振器(MRR)和非对称马赫-曾德尔干涉仪(AMZI)传感器。实验结果表明,基于AMZI和MRR的传感器的灵敏度分别为86.6 pm/K和85.7 pm/K。本文提出的温度传感器与互补金属氧化物半导体(CMOS)制造技术兼容。得益于高灵敏度和紧凑的占地面积,这些传感器在光子电子应用领域显示出巨大的潜力。
为了满足诱饵态 MDI-QKD 的安全性证明,重要的是弱相干态之间的相位随机化。我们的装置本质上是通过增益切换主激光器的性质实现这一点的:通过在每个时钟周期内定期将激光器驱动到阈值以下,持续足够的时间使激光腔中没有光子,每个脉冲都从自发辐射中增长 - 即由随机真空涨落有效地播种。通过将每个发射器中的未衰减脉冲串(每个脉冲的持续时间为 75 ps,如补充图 1a 所示)通过非对称马赫-曾德尔干涉仪 (AMZI) 来确认这一点,其中一条臂延迟以干扰连续的相干态。在光电二极管和示波器上测量输出强度,然后进行处理以形成 10 5 个脉冲中心的输出强度直方图。直方图(补充图 1b)展示了均匀分布的随机相对相位 φ 的脉冲干涉预期呈现 1 + cos(φ) 形状,其中考虑了实验的不确定性[1]。