我们根据实数和复数复合量子系统上的纠缠定义来描述纠缠。特别是,我们建立了一种评估选定数字系统的量子相关性的方法,阐明了为什么用复数描述量子态这一根深蒂固但很少被讨论的问题。通过我们的实验,我们实现了双光子偏振态,它们相对于两个量子比特的概念纠缠,包括两个实数上的两级系统。同时,生成的状态相对于两个复数量子比特是可分离的。除其他结果外,我们还根据实值局部展开重建了生成状态的最佳近似值,并表明这会产生对我们数据的不完整描述。相反,生成的状态被证明可以完全分解为具有复波函数的张量积状态。因此,我们利用现代理论工具和实验平台探索量子物理范式,这些范式与量子信息科学和技术的应用相关,并与自然量子描述的基础相关。
近年来,由于实验技术的进步,量子通信的实际应用,即利用基本粒子的量子态进行信息编码传输,迈向了一个新的发展阶段[1–3]。结果表明,超选择现象在量子信息传输研究中起着重要作用[4, 5]。自然界中,只可能发生对应于电荷超选择算符的同一特征值的态的相干叠加,而超选择规则[6]禁止发生对应于其不同值的叠加态。不同区域的任何纯态叠加都会导致密度矩阵描述的混合态。在论文[7]中,我们提出了一个代数模型,用于研究具有非阿贝尔超选择规则的少核子系统。本文的目的是利用该模型描述在非阿贝尔同位旋超选择规则存在的情况下,借助核子进行的量子信息传输。
电荷半径是原子核最基本的属性之一,用于描述其电荷分布。尽管 A 1 / 3 规则很好地描述了质量数函数的总体趋势,但一些精细结构(例如沿钙同位素链的演变和相应的奇偶交错)在密度泛函理论和从头算方法中都难以描述。在本文中,我们提出了一种描述钙同位素电荷半径的新假设,即在相对论平均场模型中计算的电荷半径上添加一个校正项,该校正项与库珀对的数量成比例,由 BCS 振幅和一个参数决定,并使用 BCS 方法处理配对相互作用。新假设的结果不仅与钙同位素的数据一致,而且与氧、氖、镁、铬、镍、锗、锆、镉、锡和铅等十种其他同位素链的数据也一致。值得注意的是,这个具有单一参数的假设可以描述整个周期表中的核电荷半径,特别是奇偶交错和抛物线行为。我们希望本研究可以激发更多关于其性质及其与用于解释电荷半径奇偶交错的其他效应的关系的讨论。
在本研究中,我们通过测量逆自旋霍尔效应,用实验证明了传播的 SPP 诱导自旋电流,首次证明了传播的 SPP 和自旋电流之间的相互转换性。为了确认 SPP 诱导自旋电流的存在,需要消除由激光引入局部加热引起的其他寄生效应,比如自旋量热器产生的自旋电流。这通过三项测量实现了;(i) 逆自旋霍尔效应的反向对准,(ii) s 和 p 极化引入,以及 (iii) 逆自旋霍尔效应的入射角依赖性。所展示的结果可用于开发基于 SPP 的光自旋电子耦合器,作为自旋电子器件和光学数据传输或存储之间的接口。
量子计算机的构建模块已在小型到中型系统中得到演示。作为领先的平台之一,离子阱系统引起了广泛关注。该系统面临的一个重大挑战是将快速高保真门与离子阱制造的可扩展性和便利性结合起来。在这里,我们提出了一种用于大规模量子计算的架构,其中二维原子离子阵列被捕获在如此远的距离,这对于离子阱制造很方便,但通常认为不适合量子计算,因为传统的门太慢了。使用远离 Lamb-Dicke 区域的门操作,我们表明可以在任何大型离子阵列中实现快速而强大的纠缠门。门操作本质上是并行的并且对热噪声具有鲁棒性,再加上所提出的架构的高速和可扩展性,使这种方法成为大规模量子计算的一种有吸引力的方法。
核物质的状态方程,即核子结合能、温度、密度以及同位旋不对称性之间的热力学关系,长期以来一直是核物理和天体物理领域的研究热点。了解核状态方程对于研究原子核的性质、中子星的结构、重离子碰撞(HIC)动力学以及中子星并合都至关重要。重离子碰撞提供了一种在地面实验室中生成高密度和同位旋不对称核物质的独特方法,但形成的致密核物质仅存在很短的时间,人们无法在实验中直接测量核状态方程。实际应用中,通常采用将现象学势作为输入的输运模型,通过与实验室测得的可观测量进行比较来推导核状态方程。超相对论量子分子动力学 (UrQMD) 模型已广泛应用于研究从费米能量 (40 MeV/核子) 到 CERN 大型强子对撞机能量 (TeV) 的 HIC。随着 UrQMD 模型的核平均场势项、碰撞项和团簇识别项的进一步改进,FOPI 合作组最近测量的轻带电粒子集体流和核停止数据可以重现。在本文中,我们重点介绍了我们最近使用 UrQMD 模型研究核 EOS 和核对称能的成果。讨论了从传输模型和 HIC 实验中提取核 EOS 的新机遇和挑战。
高保真和鲁棒的量子操控是可扩展量子计算的关键。因此,由于内在的操作鲁棒性,由几何相位引起的量子操控是最有希望的候选者之一。然而,几何操作的较长门时间和更多的物理实现困难阻碍了它的实际和广泛应用。在这里,我们提出了一种在超导电路上简化的通用完整量子门实现方法,并通过实验证明该技术,通过在量子门的构造中引入时间最优控制来消除两个主要挑战。值得注意的是,我们的方案还基于无退相干子空间编码,具有最少的物理量子位资源,这可以进一步免受量子位频率漂移引起的错误的影响,而量子位频率漂移被认为是大规模超导电路的主要错误源。同时,我们特意设计了量子演化以消除由不必要的泄漏源引起的门误差。因此,我们的方案比传统方案更为稳健,从而为可扩展容错量子计算提供了一种有前途的替代策略。
每年,有近 125 万人死于车祸。平均每天有 3,287 人死亡,而且这个数字还在上升 [1]。据两家新闻媒体报道,分心驾驶是过去几十年来车祸的主要原因 [2; 3]。驾驶员现在比以往任何时候都更容易分心,他们经常因为移动设备、导航系统和复杂的控制系统而不再注意路况 [2]。据预测,如果不采取措施,到 2030 年,道路交通伤害将成为第五大死亡原因 [1]。因此,检测驾驶员分心事件非常重要。已经提出了各种视频(眼动追踪)和语音处理方法来检测驾驶员分心 [4; 5; 6; 7]。这些方法有时是不可行的。例如,在光线不足的情况下,视频处理方法效果较差,尤其是在夜间,驾驶员很可能不太关注路况。在赛车环境中,车手必须穿戴防火服和头盔来遮盖面部,这使得视频处理方法无效 [8]。驾驶过程中的高水平背景噪音(例如发动机、收音机或风噪)可能会降低声音处理方法的有效性。
量子计算机的能量效率问题最近才引起人们的关注。对于操作具有目标计算性能的量子计算机所需的资源以及能量需求如何影响可扩展性的精确理解仍然缺失。在这项工作中,研究了囚禁离子装置中量子傅里叶变换 (QFT) 算法的一种实现。主要重点是获得量子计算能量成本的理论表征。通过分析装置的组成部分和量子计算所涉及的步骤(从离子的冷却和准备到算法的实现和结果的读出),估算了实验的能量成本。讨论了能量成本的潜在扩展,并用它来找到与最先进的经典超级计算机相比能量量子优势的可能阈值。
预测将无人机系统 (UAS) 整合到国家航空航天 (NAS) 中的结果是一个复杂的问题,在允许 UAS 常规进入 NAS 之前,需要通过模拟研究来解决。本论文重点介绍使用博弈论方法提供 2D 和 3D 模拟框架,以评估有人驾驶和无人机共存场景中的整合概念。文献中的根本差距在于有人驾驶和无人机之间相互作用的模型不足:a) 它们假设飞行员行为是先验已知的,b) 它们忽视了决策过程。这项工作的贡献是提出了一个建模框架,其中使用强化学习和称为 k 级推理的博弈论概念来建模人类飞行员的反应以填补这一空白。k 级推理概念基于人类具有不同层次的决策的假设。强化学习是一种植根于人类学习的数学学习方法。在本研究中,我们采用经典和近似强化学习(神经拟合 Q 迭代)方法对飞行员在 2D 和 3D 机动中的延时决策进行建模。在有人驾驶飞机和配备感知和避让算法的全自动 UAS 存在的情况下,使用示例场景对 UAS 集成进行分析。