Xiphera的Chacha20-Poly1305和Ascon对称加密IP核心为广泛的应用提供了可靠的安全性。chacha20-poly1305将高速chacha20流密封与多1305身份验证器结合在一起,提供了加密和身份验证。ascon作为一种轻巧的加密算法,是IOT设备等受约束环境的理想选择。这两个内部设计的IP内核都均已优化,以供FPGA和ASIC实现中的效率和最佳性能。
在本文中,我们介绍了密码套件 Ascon,它提供了带关联数据的认证加密 (AEAD) 和散列功能。该套件由认证密码 Ascon -128 和 Ascon -128a 组成,它们已被选为 CAESAR 竞赛最终组合中轻量级认证加密的首选,还有一种新变体 Ascon -80pq,可以增强对量子密钥搜索的抵抗力。此外,该套件还包括散列函数 Ascon-Hash 和 Ascon-Hasha ,以及可扩展输出函数 Ascon-Xof 和 Ascon-Xofa 。NIST 的建议包括 Ascon -128 与 Ascon-Hash 的组合或 Ascon -128a 与 Ascon-Hasha 的组合。所有方案都提供 128 位安全性,并在内部使用相同的 320 位排列(具有不同的轮数),因此单个轻量级原语足以实现 AEAD 和散列。
近年来,物联网设备的数量已大大增加,物联网中的边缘计算被认为是技术行业的新趋势。虽然密码学被广泛用于增强物联网设备的安全性,但它也具有限制,例如资源限制或延迟。因此,轻质密码学(LWC)平衡了相应的资源使用和维持安全性,同时最大程度地减少了系统成本。ASCON在LWC算法中脱颖而出,是实施和加密分析的潜在靶标。它在许多变体中提供了经过认证的加密(AEAD)和哈希功能,旨在针对各种应用。在此简介中,我们提出了Ascon密码学作为RISC-V System-A-A-Chip(SOC)的外围的实施。Ascon Crypto Core在FPGA中占据1,424个LUT,在180nm CMOS技术中占据17.4kge,同时以1.0V的供应电压和2MHz的频率达到417GBITS/J的能量效率。
摘要 — 物联网 (IoT) 对象的使用日益增多,因此有必要开发低功耗安全电路。轻量级加密 (LWC) 算法用于在有限的功耗下保护这些连接对象的通信。能量收集技术可以提供物联网对象所需的电力。但是,它可能遭受突然断电,导致系统微控制器停止运行。为了使加密原语能够从意外断电中快速恢复,我们提出了一种基于 CMOS/MRAM 的 A SCON 密码硬件实现,该密码是美国国家标准与技术研究所 (NIST) LWC 竞赛的决赛入围者。我们专注于从 MTJ 电气模型开始的 ASIC 设计流程,而无需重新开发现有的 EDA 工具。作为研究案例,A SCON 计算的中间状态可以存储在非易失性存储器中,并在断电后启动时恢复,从而节省重新计算算法第一步的能源成本。此实现可节省 11% 至 48% 的能源,面积开销为 5.5%。索引术语 —A SCON、LWC、STT-MRAM、MTJ、非挥发性
摘要。采用不同计算范式的量子计算机的开发正对密码学的安全构成威胁。将范围缩小到对称键的加密型,Grover搜索算法在对安全性的影响方面可能是最有影响力的。最近,已经努力估算Grover对对称密钥密码的关键搜索的复杂性,并评估其量词后安全性。在本文中,我们提出了对Ascon的Quanmu电路的深度优化实施,这是一个对称的密钥密码,已在NIST(国家标准和技术研究所)轻巧密码标准化中得到标准化。据我们所知,这是用于AS-CON AEAD(使用关联数据认证的加密)方案的量子电路的首次实现。 对我们的理解,减少目标密码的量子电路的深度是Grover关键搜索的最有效方法。 我们演示了ASCON的最佳Grover的主要搜索成本,以及建议的深度优化量子电路。 此外,根据估计的成本,我们根据相关评估标准和最先进的研究来评估Ascon的量词后安全强度。据我们所知,这是用于AS-CON AEAD(使用关联数据认证的加密)方案的量子电路的首次实现。对我们的理解,减少目标密码的量子电路的深度是Grover关键搜索的最有效方法。我们演示了ASCON的最佳Grover的主要搜索成本,以及建议的深度优化量子电路。此外,根据估计的成本,我们根据相关评估标准和最先进的研究来评估Ascon的量词后安全强度。
摘要本章重点介绍了ASCON加密算法,该算法是一种轻巧的加密协议,专门设计用于适合具有限制资源的环境,例如物联网设备和嵌入式系统。该分析是在Ascon-128,Ascon-128a和Ascon-80PQ变体上进行的,突出了它们对不同安全和运营必需品的适当性。在各种数据尺寸(1KB,10KB,100KB和1000KB)上测量了诸如加密和解密时间,记忆消耗和吞吐量之类的主要性能指标。通过此分析,很明显,无论数据大小如何,Ascon在加密和解密中都非常稳定,有效地表现,因此,在一致的处理时间是一个重要考虑因素的系统中,可以轻松地依靠它。研究还发现,解密过程中的记忆使用量始终高于加密过程中的记忆使用情况。对于记忆敏感的应用,需要考虑此因素。至于吞吐量,该算法在解密较小的文件和较大文件的加密方面表现出了更好的结果。得出结论,Ascon算法轻巧且非常有效,这使其成为受约束环境的合适选择。关键字:时代,密码学,算法。
摘要:量子计算进步对密码学构成了安全挑战。具体来说,格罗弗的搜索算法会影响对称键加密和哈希功能的搜索复杂性的降低。最近努力估算了格罗弗搜索的复杂性并评估量子后安全性。在本文中,我们提出了ASCON的深度优化量子电路实施,包括对称键的加密和哈希算法,作为NIST(国家标准和技术研究所)轻量级加密标准化的一部分。据我们所知,这是ASCON AEAD的量子电路的首次实现(使用关联数据进行身份验证的加密)方案,该方案是一种对称键算法。此外,与先前的工作相比,我们对Ascon-Hash的量子电路实施在Toffoli深度的降低超过88.9%,全深度下降了80.5%。根据我们的理解,针对Grover搜索的最有效策略涉及最大程度地减少目标密码的量子电路的深度。我们展示了Grover的最佳搜索成本,并引入了针对深度优化的拟议量子电路。此外,我们还利用估计的成本来评估ASCON的量词后安全强度,采用相关评估标准和研究的最新进步。
网络物理系统和嵌入式设备已成为我们日常生活不可或缺的一部分。物联网(IoT)功能继续提高,并应用于军事,公用事业和医疗保健等技术领域。这些域内数据的关键性需要强大的安全性和完整性。我们的研究提供了对现实世界应用的轻质加密算法ascon的新评估。我们使用位于美国空军学院(USAFA)的IoT环境评估ASCON的影响,我们发现Ascon在应用于MQTT消息协议上以对消息进行加密信息时的预期执行,而无需抑制信息共享,但提供必要的安全性和完整性。我们表明,ASCON与AES的性能度量相媲美,但内存足迹较小。这很重要,因为它转化为需要紧凑系统的更广泛的应用程序和机会。这是对现实世界应用中ASCON的首次评估。
摘要。这项工作调查了NIST美国最近对Ascon Cipher进行的持续故障分析,用于轻巧的加密应用。在持续的故障中,在整个加密阶段,系统中都存在曾经通过Rowhammer注入技术注入的故障。在这项工作中,我们提出了一个模型,以安装Ascon Cipher上的持续故障分析(PFA)。在Ascon Cipher的最终回合中,我们确定置换回合中注入故障的S-box操作P 12很容易泄漏有关秘密密钥的信息。该模型可以存在于两个变体中,其中一个平行S-box调用中的单个输出s-box的实例,同一错误的S-box迭代64次。攻击模型表明,具有经过身份验证的加密使用相关数据(AEAD)模式运行的任何spongent构造都容易受到持续故障的影响。在这项工作中,我们演示了单个故障的场景,其中一旦注射后,在设备关闭电源之前,该故障持续了。使用采用的方法,我们成功地检索了Ascon中的128位键。我们的实验表明,所需查询的最小数字和最大数量分别为63个明文和451个明文。此外,我们观察到,安装攻击所需的查询数量取决于S-box LUT中的故障位置,如报告的图所示,该图报告了最小查询数量和100个键值的平均查询数量。
摘要物联网(IoT)节点由收集环境数据的传感器组成,然后使用周围的节点和网关进行数据交换。网络安全攻击对任何物联网网络中正在传输的数据安全构成威胁。加密原始图被广泛采用以应对这些威胁;但是,实质性的计算要求限制了它们在物联网生态系统中的适用性。此外,每个物联网节点都随区域和吞吐量(TP)要求而变化,因此要求实现加密/解密过程。为了解决这些问题,这项工作通过采用环路折叠,循环独立且完全展开的体系结构来实现NIST轻巧的加密标准Ascon,Ascon,Ascon。完全展开的体系结构可以达到最高的TP,但以更高的面积利用为代价。通过较低的因素展开会导致较低的区域实施,从而探索了设计空间,以应对设计区域和TP性能之间的权衡。实施结果表明,对于环路折叠的结构,Ascon-128和Ascon-128a需要36.7k µm 2和38.5k µm 2芯片面积,而其全持续不经气的实施则需要277.1k µm 2和306.6k µm 2。拟议的实施策略可以调整回合的数量,以适应物联网生态系统的各种要求。还进行了具有开源45 nm PDK库的实现,以增强结果的概括和可重复性。