挑战专利的实施例涉及使用配置了心率监测器的智能手表,例如“光学传感器来检测血流波动的波动”,即,使用光插图器学(“ PPG”)传感器,该传感器使用光的光来测量循环血液变化的光。'499专利25:13-16。用户佩戴智能手表,PPG传感器将心率信息连续传输到智能手机,然后对智能手机进行“分析不规则性的心率”。id。在23:16-20。“确定不规则性”,通知用户心电图(“ ECG”)“应记录”。 ID。在23:20-22。然后,用户可以使用第二个传感器,指定“手持[ECG]传感器”,ID。在4:48-49,记录“基于去极化和心室的重极化的心脏的电活动”,J.A。 119(省略了引号),并且使用此附加数据诊断用户是否患有心脏雅利亚宫。 用户还可以使用ECG传感器“记录可以保存和/或传输进行分析的ECG。” ID。 在23:24-26。在4:48-49,记录“基于去极化和心室的重极化的心脏的电活动”,J.A。119(省略了引号),并且使用此附加数据诊断用户是否患有心脏雅利亚宫。用户还可以使用ECG传感器“记录可以保存和/或传输进行分析的ECG。” ID。在23:24-26。
心脏是一种肌肉,可以将血液和氧气在您的身体周围泵入所有重要器官。它有四个腔室,顶部有两个(右侧和左心房),底部有两个(右心室和左心室)。心脏还具有一个电气系统,它通过心脏发出冲动(节拍),导致其收缩并在体内抽血。每个正常的心跳始于心脏的天然起搏器(中环或SA节点),位于右心房顶部。它穿过两个顶部腔室,并穿过上和下腔之间的小连接(室内或AV节点)。然后,它散布在底部腔室(心室),导致心脏收缩并通过右心室将血液泵入肺部,并通过左心室在体内含氧血液。有时您心脏中的电气系统无法正常工作,导致您的心脏跳动太快或太慢。除颤器可以阻止从心室开始的快速心律。这种快速心律称为心室心动过速或VT。
摘要心肌细胞在心脏病中起着关键作用,但知识较少,尤其是在产前阶段。在这里,我们通过整合单细胞RNA测序,空间转录组学和配体 - 受体相互作用信息来表征人类产前心肌细胞,概念后6.5-7周。使用用于剖析细胞类型异质性,定位细胞类型并探索其分子相互作用的计算工作流量,我们识别了八种类型的发育中的心肌细胞,与人类发育细胞中的含量相比,这是两倍以上。这些在细胞周期活性,线粒体含量和连接蛋白基因表达方面具有较高的变异性,并且分布在心室中,包括流量段和心房,包括Sinoatrial node。此外,心肌细胞配体受体串扰主要具有非心脏细胞类型,包括与心脏病相关的途径。因此,早期产前人类心肌细胞是高度异质性的,并具有独特的位置依赖性特性,具有复杂的配体受体串扰。进一步的发育动力可能会引起新的疗法。
心房心肌病被定义为影响心房的结构,建筑,收缩或电生理变化的任何复合物,具有产生临床相关表现的潜力。我们对心房心肌病的机械方面的大多数了解源自研究心房颤动的动物模型和从具有房颤病史的个体获得的房颤动物模型。据报道,几种非侵入性工具是表征患者心房心肌病的表征,这可能与预测出现房颤的风险及其相关结果(例如中风)有关。在这里,我们提供了与心房心肌病有关的病理生理机制的概述,并讨论了这些机制的复杂相互作用,包括衰老,剩下的心房压力超负荷,代谢性疾病和遗传因素。我们讨论目前可用于表征心肌病的临床工具,包括心电图,心脏成像和血清生物标志物。最后,我们讨论了心房心理病的临床影响,及其预测心房颤动,中风,心力衰竭和痴呆症的潜在作用。总体而言,这篇综述旨在强调对心房心肌病的临床相关定义的关键需求,以改善治疗策略。
肉桂酸 (CA) 具有重要的心血管作用,如保护心脏、抗动脉粥样硬化、抗高血脂和抗氧化,这预示着它在高血压治疗中具有潜在作用。这项研究旨在调查 CA 在 Sprague Dawley (SD) 大鼠中的抗高血压潜力,随后对其进行评估,以了解其在各种血管制剂中的作用。在麻醉状态下,对正常血压和高血压大鼠采用侵入性血压监测技术。使用来自大鼠和兔子的分离主动脉环、Langendorrf 灌注的兔离体心脏和豚鼠右心房来探究潜在机制。使用连接到 PowerLab 数据采集系统的压力和力传感器记录反应。静脉注射 CA 分别导致高血压大鼠和正常血压大鼠的平均动脉压 (MAP) 下降 54% 和 38%。在大鼠主动脉环中,CA 表现出毒蕈碱受体相关的 NO 和吲哚美辛敏感的内皮依赖性 ( > 50%) 和钙拮抗剂以及 K ATP 介导的内皮非依赖性血管扩张作用。CA 在豚鼠心房条中表现出负性肌力和变时性作用。CA 抑制心室收缩力和心率,同时导致冠状动脉流量增加 25%。这项研究支持了 CA 作为抗高血压药物的药用重要性。
鱼具有一个简单的两个腔室心脏,本质上只是循环系统的一部分的增厚,而血液从心脏到g到身体再回到心脏的单个电路中流动。从两栖动物开始,第一个带有肺的脊椎动物,循环系统增加了第二个环或电路。这种设计在系统围绕系统的每次旅行中两次都有血液流过心脏,一次是前往肺部的路,一次从肺部返回,从而额外提升。这称为双循环。在两栖动物中,有两个心房,但只有一个心室,这会导致脱氧和充氧的血液混合,但两栖动物也通过湿润的皮肤收集氧气,因此这种低效率并不重要。从爬行动物开始,隔膜或壁会形成部分将脱氧的脱氧血液与心室中的血液划分,这很重要,因为爬行动物具有水密皮肤,完全依靠其肺部用于氧气。爬行动物还具有独特的能力,可以重定向或分流的血液,而无需通过身体电路,将心脏从心脏流动,并在不转到肺部的情况下将脱氧体血流回到体内。该分流的目的(请参阅下图中的紫色容器)
一项全基因组关联研究 (GWAS) 的荟萃分析确定了八个与心率变异性 (HRV) 相关的基因座,但这些基因座中的候选基因仍未得到表征。我们开发了基于图像和 CRISPR/Cas9 的流程,系统地表征活斑马鱼胚胎中 HRV 的候选基因。在转基因表达平滑肌细胞 GFP 的斑马鱼 (Tg[ acta2:GFP ]) 的卵子中同时靶向六个人类候选基因的九个斑马鱼直系同源物,以使跳动的心脏可视化。在受精后 2 天和 5 天,对 381 个活的完整斑马鱼胚胎中的心房跳动进行 30 秒重复记录的自动分析突出显示了影响 HRV 的基因( hcn4 和 si:dkey-65j6.2 [KIAA1755] );心率( rgs6 和 hcn4 );以及窦房停顿和骤停风险( hcn4 )。暴露于 10 或 25 µM 伊伐布雷定(HCN 的开放通道阻断剂)24 小时后,在受精后 5 天,剂量依赖性地导致 HRV 升高和心率降低。因此,我们的筛选证实了已确定的心率和节律基因(RGS6 和 HCN4)的作用;表明伊伐布雷定可以降低斑马鱼胚胎的心率并增加 HRV,就像在人类中一样;并突出了一个在 HRV 中发挥作用的新基因(KIAA1755)。
结果:我们发现Holt -Oram综合征患者心房额外的收缩期和心室传导障碍的高发生率。TBX5 G125R/+小鼠在形态上不受影响,并且显示出可变的RR间隔,心房额外的收缩期和对心房颤动的敏感性,让人联想到TBX5-P.G125R患者。心房传导速度不受影响,但与对照组相比,在TBX5 G125R/+小鼠的分离的心肌细胞中,分离的心肌细胞中延长了收缩和舒张性细胞内钙浓度。心房的转录分析揭示了心肌细胞与其他细胞类型的最深刻的转录变化,并在一千个编码和非编码转录本上鉴定出差异表达。表观遗传分析发现了数千个TBX5-P.G125R敏感的,推定的调节元件(包括增强剂),这些元件可在心房心肌细胞中获得可及性。大多数可访问性增加的站点被TBX5占据。对于转录因子的SP(特异性蛋白)和KLF(特异性蛋白)(特异性蛋白)(特异性蛋白)(Krüppel样因子)家族的DNA结合基序的少量位点富含。这些数据表明,TBX5-P.G125R会诱导调节元件活性的变化,改变转录调控以及心肌细胞行为的变化,这可能是由DNA结合和合作特性改变引起的。
从事国家战略的制定,以帮助他们“在我们的医疗保健系统中发挥作用,并以焦点领域的共同理解和符合NA的举措所需的转型(例如更健康的SG和Age Age Well SG)。”他补充说,该策略将指导AHP处理未来的挑战并改善人口结果,并在2025年牢固时会分享更多细节。兼职副教授Mi-Chael Ong是国立大学卫生系统(NUHS)的盟军卫生集团主任,他说,国家盟军卫生战略将赋予物理治疗师和心理学家等专业人士的权力,以其执业的最高职业。“通过最大程度地工作,这些职业可以做出独立的临床决策,并及时提供友好的护理,作为社区环境中的盟友,”教授说。大约有18个国家 /地区的大约1,100名专业人士和学生参加了会议。在新加坡的Max Atria @ Expo举行,由NUHS与Singhealth和National Healthcare Group合作组织。马萨戈斯先生在演讲中说,还需要强大的领导人大胆地促进盟军的健康专业,因为战略只与那些不断增加的策略一样好。他强调了针对旨在培养可以推动变革,挑战并抓住机会的领导者的药房领导部门的领导力发展策略的例子。还需要以重新思考提供更好护理的方式来培养创新精神。Masagos先生列举了盟军医疗保健中创新方法的例子,包括Eatsafe,这是由语音治疗者和营养师领导的一项努力,以标准化术语为每个人提供吞咽困难的人提供标准化术语提供通用语言。“这些是在新加坡促进盟军健康和药房服务方面所做的值得称赞的努力,但必须由我们的
图 1 循环的进化模型:早期脊椎动物、鱼类、两栖动物和哺乳动物的循环系统。文昌鱼是一种原始脊椎动物,没有心脏作为中央循环器官,也没有鳃,氧气通过皮肤吸收。血液在没有内皮衬里的血管内自主流动。鱼类有单环、以静脉为主的循环,心脏有两个腔,一个心房和一个心室,与鳃和体循环串联。从水中到陆地的过渡要求新器官——肺的发育,以及心脏变态为由两个心房和一个心室组成的三腔器官。在两栖动物中,来自肺的动脉血和来自身体的静脉血在心室内混合,这为并行的低压肺循环和体循环提供服务。温血哺乳动物的循环系统进一步发育,代谢率更高,对氧气的需求也更大。这是通过完全分离肺循环和体循环实现的。除了现有的为肺循环服务的心室外,还发展出一个新的腔体,即左心室,为高压动脉循环服务。这两个循环是串联的。鸟类的心肺系统体现了独特的代谢适应能力,可适应较低气压和温度以及相对缺氧的极端条件(Scott,2011)。生理性高热和高血压所反映的高代谢率使鸟类也能克服重力,成为空气生物。(改编自 Furst(2020a),经 Springer-Nature 许可使用。)