微生物与植物之间的相互作用已成为微生物学和植物生物学的重要研究领域。非生物应力,包括干旱,盐度和重金属,对全球植物生长产生了实质性影响。这些压力源,无论是单独或结合发生的,都会破坏营养的吸收并阻碍植物的整体发展(Mushtaq等,2023)。然而,有益的微生物在增强对这种非生物挑战的植物弹性方面表现出了潜力(Cardarelli等,2022; El-Shamy等,2022)。居住在根际和植物圈中的某些微生物可以促进植物水和养分,同时提供防止有害环境毒素的保护(Degani,2021; Redondo等,2022)。过去十年见证了由测序和毛质技术的进步驱动的显着步伐,从而揭示了在非生物胁迫下构成植物 - 微生物相互作用的复杂机制。这些细微的关系正在逐渐被解密,为预测和调节策略铺平道路。利用植物 - 微生物相互作用来支持植物适应非生物压力,在农业生产力,生物修复策略和生态可持续性中具有变革性的潜力。这项研究的努力旨在彰显微生物在增强植物抵抗非生物胁迫方面的重要作用。调查还深入研究了根间微生物群落对植物更广泛健康的复杂影响。Qi等。Qi等。在这个研究主题中,十项学术贡献深入研究了多种机制,通过这些机制,微生物可以帮助植物适应环境爆发,从而维护其生长和生存。总的来说,这些文章提供了有关微生物如何促进生态系统功能和植物福祉的全面观点。响应紧急市场需求和严重的非生物压力,增强植物生产和生存已成为研究的核心重点。利用RNA干扰(RNAI)技术来构建油酸去饱和酶(FAD2)基因的IHPRNA植物表达载体,从而导致油酸含量升高,并降低了菜籽中亚油酸和亚麻酸的水平。值得注意的是,根际微生物群落作为遗传评估的指标
摘要:植物在整个发育期都会承受非生物胁迫。非生物应力包括干旱,盐,热,冷,重金属,营养元素和氧化应激。改善植物对各种环境压力的反应对于植物的生存和实用性至关重要。WRKY转录因子具有特殊的结构(WRKY结构域),这使得WRKY转录因子具有不同的转录调节函数。WRKY转录因子不仅可以通过调节植物激素信号通路来调节非生物应激反应以及植物的生长和发育,而且还可以通过与W-Box [Tgacca/Tgacct]结合在其靶基因的启动子中通过与W-Box [TGACCA/TGACCT]结合来促进或抑制下游基因的表达。此外,WRKY转录因子不仅与其他转录因子家族相互作用,以调节植物防御对非生物胁迫的反应,而且还通过识别和与W-box的结合来自我调节,以调节其对非生物胁迫的防御反应。然而,近年来,关于高等植物中WRKY转录因子的调节作用的研究评论稀缺。在这篇综述中,我们着重于WRKY转录因子的结构和分类,以及鉴定其下游目标基因和参与对非生物压力的反应的分子机制,这可以提高植物在非生物压力下的耐受能力,我们还期待着未来的研究指导,并提供了对属性的影响,并提供了属性的影响。
后生动物通过多个生命阶段依靠与微生物的互动。例如,蚊子的发育轨迹可能会根据水生幼虫阶段可用的微生物而变化。然而,当地环境在塑造这种宿主微叶动力学和对宿主有机体的后果中所扮演的作用仍然不足。在这里,我们研究了非生物因子,局部可用的细菌的影响,以及它们对蚊子艾德斯白化菌的发育和相关微生物群的相互作用。Our findings reveal that leaf detritus infused into the larval habitat water, sourced from native Hawaiian tree ‘ ¯ ohi‘a lehua Metrosideros polymorpha , invasive strawberry guava Psidium cattleianum , or a pure water control, displayed a more substantial influence than either temperature variations or simulated microbial dispersal regimes on bacterial community composition in adult mosquitoes.然而,特定的细菌在跨碎屑输注中表现出不同的模式,这些蚊子与幼体栖息地中的丰度不符。具体来说,我们观察到了菊花杆菌的相对丰度较高。从草莓番石榴输注中的蚊子中的菌株比纯水控制,而对于假单胞菌sp。观察到相反的趋势。应变。在一项后续实验中,我们操纵了这两种细菌菌株的存在,并通过包括菊科SP来增强幼体发育成功。草莓番石榴输注和假单胞菌sp。在纯水控制中应变。共同表明,幼虫环境的非生物因素和微生物之间的相互作用可以帮助塑造蚊子人群的成功。
摘要:甘蔗是一种重要的经济作物,为世界糖供应和生物燃料生产的原料做出了巨大贡献,在全球糖业中发挥着重要作用。然而,生物和非生物胁迫严重阻碍了甘蔗可持续生产力的发展。基因工程已被用于将有用的基因转移到甘蔗植物中以改善其理想性状,并已成为一种基础和应用研究方法,以在不同不利环境条件下保持生长和生产力。然而,转基因方法的使用仍然存在争议,需要严格的实验方法来应对生物安全挑战。成簇的规律间隔短回文重复序列 (CRISPR) 介导的基因组编辑技术正在迅速发展,并可能彻底改变甘蔗生产。本综述旨在探索创新的基因工程技术及其在开发具有增强的抗生物和非生物胁迫能力的甘蔗品种以生产优良甘蔗品种中的成功应用。
植物生长调节剂(PGR)对于通过激活其增殖和发育途径来调节植物如何应对植物至关重要。植物在开发周期中遇到的非生物压力源是由生长调节剂管理的。生长激素是控制植物的定期生长和对外部刺激的反应的化学信使。他们控制组织的发育和分化,从而控制植物的发展速度。PGR对于植物对非生物应激的反应是必需的。此外,植物中的激素使它们能够识别不利的环境环境。植物生物合成的能力使植物激素能够适应其环境。脱离的酸性辅助植物应对盐和干旱胁迫,而盐度,过度浇水,寒冷和干旱的乙烯艾滋病植物。植物可以借助茉莉酸从机械损伤和干旱胁迫中恢复。研究还提供了一些技巧,以最大程度地提高生长调节剂增强作物对非生物压力源的耐受性的能力。
非生物胁迫对农业构成严重威胁,因为它会对细胞稳态产生负面影响,并最终阻碍植物的生长和发育。由于气候变化,干旱和过热等非生物胁迫因素预计在未来会更频繁地出现,这将降低玉米、小麦和水稻等重要作物的产量,并可能危及人类的粮食安全。植物微生物组是一个与植物相连的多样化、分类学上组织的微生物群落。通过为植物提供营养和水分,并调节其生理和新陈代谢,植物微生物群经常帮助植物发育和耐受非生物胁迫,从而提高非生物胁迫下的作物产量。在本研究中,我们重点关注温度、盐和干旱胁迫,描述了非生物胁迫如何影响植物、微生物组、微生物-微生物相互作用和植物-微生物相互作用的最新发现,以及微生物如何影响植物的新陈代谢和生理。我们还探讨了在面临非生物胁迫的农业实践中应用植物微生物组必须采取的关键措施。
植物会随着季节变化而持续地暴露在各种环境和生物多样性压力之下,这些压力会抑制和影响植物从幼苗到收获阶段的生命过程。光照强度、温度、矿物质和水分供应等方面都存在一些异常。这些变化不断挑战植物的生长和繁殖,并产生多种环境信号。为了接收这些信号,植物本身会形成一个信号网络,其中包含多种受体,如植物激素、G 蛋白偶联受体、激酶和激素受体。信号转导会在植物中产生细胞反应,从而启动生理和发育反应。本文对植物在暴露于几种非生物胁迫时信号转导的几种机制和感知进行了深入细致的分析,并介绍了植物信号传导的一般途径。植物非生物胁迫通常在造成盐度、高温、低温、干旱等损失方面起着关键作用。为了通过主要依赖于遗传变异的常规育种来理解和克服这些问题,正在对拟南芥、水稻和短柄草等模型植物进行多项研究;在小麦中,这些基因组来源的可获得性正处于加工阶段。另一方面,基因组编辑的进步为科学家将所需特性融入特定植物物种打开了大门。第二代基因组编辑技术(如 CRISPR/cas9)的新兴发展为植物生物学家铺平了道路,使他们能够更高效、更快速地开发特性,这与传统育种方法不同。本综述概述了非生物胁迫期间信号传导的重要性以及转基因技术通过摄取植物中所需的特性来克服植物的非生物胁迫。
全球变暖、干旱、洪水和其他极端事件等气候变化的影响对全球作物生产构成了严峻挑战。油菜对油料产业的贡献使其成为国际贸易和农业经济的重要组成部分。这种作物遭受的多种非生物胁迫越来越多,导致农业经济损失,因此,让油菜作物在同时面临多种非生物胁迫时具有生存和维持产量的能力至关重要。为了更好地了解压力感知机制,需要分析多种压力响应基因和其他调控元件(如非编码 RNA)的调控途径。然而,我们对这些途径及其在油菜中的相互作用的理解还远未完成。本综述概述了目前对压力响应基因及其在赋予油菜多种压力耐受性方面的作用的了解。通过组学数据挖掘分析网络串扰现在使得揭示植物压力感知和信号传导所需的潜在复杂性成为可能。本文还讨论了新型生物技术方法,例如无转基因基因组编辑和利用纳米粒子作为基因传递工具。这些方法有助于为开发具有更少监管限制的、能够抵御气候变化的油菜品种提供解决方案。本文还强调了合成生物学通过微调应激调节元件来设计和修改网络的潜在能力,以适应植物对应激的适应。
由气候变化引起的抽象非生物压力对农业构成了巨大威胁。特别是,与气候变化相关的干旱压力将对农作物的生长,发育和最终产生产生巨大的负面影响。由于天气模式的变化对农民种植农作物的能力有直接影响,因此应解决改善农民适应能力的紧迫性,以最大程度地减少气候变化的潜在负面影响。适应技术的可用性将减少农作物生产损失,对于获得气候变化弹性作物至关重要。一种潜在的自适应度量是使用与气候变化相关的应力弹性的作物品种。各种育种技术已被用来开发新的耐用作物,如果不是,则增强或提高了由气候变化带来的不利环境条件下生存的作物生存的能力。减轻对农业影响的最可持续策略之一是气候弹性作物的发展。可能在极端天气条件下蓬勃发展的作物,因为气候变化的影响。常规育种可能不足以发展新的农作物品种,具有更高耐用性的非生物压力,例如干旱,盐度,浸没,高温和低温。因此,探索了其他策略或与常规育种结合的策略,以提高遗传变异性,以提高对非生物应激的耐受性。这些是生物技术方法,包括标记辅助育种,突变育种,基因工程和基因组编辑。这些技术为开发气候变化弹性作物提供了更好的未来。
叶绿素荧光发射是由吸收的光能引起的,这些光能不会以热量的形式消散,也不会用于植物的光合作用反应。光合作用分为两个不同的部分,即光反应和二氧化碳 (CO 2 ) 固定。在光反应中,光能被用来生成氧化蛋白质复合物,该复合物能够在光系统 II (PSII) 中从水中提取电子,同时重新激发提取的电子以还原光系统 I (PSI) 中的 NADP +。这些“光收集”反应导致 ATP 和还原力(还原铁氧还蛋白和 NADPH)的形成,随后通过卡尔文 - 本森 - 巴沙姆循环进行 CO 2 固定。叶绿素 a 荧光分析可以确定直接用于光化学的吸收光能量,并估计生物或非生物胁迫下的光合作用效率 ( Moustakas 等人,2021 年;Moustakas,2022 年)。叶绿素 a 荧光信号可以根据光合作用活性进行解释,以获得有关光合作用机构状态的信息,尤其是光系统 II (PSII) 的状态信息 ( Murchie 和 Lawson,2013 年;Moustakas 等人,2021 年)。叶绿素荧光测量已广泛用于探测光合作用机制的功能和筛选不同作物以耐受各种压力和营养需求(Guidi 和 Calatayud,2014 年;Kalaji 等人,2016 年;Sperdouli 等人,2021 年;Moustakas 等人,2022a 年)。使用脉冲幅度调制 (PAM) 方法可以主要计算引导至 PSII 进行光化学反应的吸收光能量,这些能量通过非光化学猝灭 (NPQ) 机制以热量形式耗散或通过不太明确的非辐射荧光过程耗散,分别标记为 F PSII 、F NPQ 和 F NO ,它们的总和等于 1(Kramer 等人,2004 年)。在本研究中,我们总结了本期特刊中的文章,为读者更新了该主题,并讨论了叶绿素荧光的当前应用