摘要:我们提出了一个新型的带有有限的baryon和Isospin化学势的QCD中的新型重型涡流相。众所周知,均质带电的PION冷凝物在有限的等音化学势下作为基态出现,因此,带有施加磁场的Abrikosov Vortex晶格出现。我们首先证明具有与常规Abrikosov涡流具有相同量化的磁通量的涡流,一旦我们考虑了对涡旋内部核心内部中性亲的调制,将由第三个同型Skyrmions捕获的Baryon数。因此,这种涡旋 - 西卡米式状态被称为Baryonic涡流。我们进一步揭示,当巴属化学电位高于临界值时,重型涡流会从带电的Pion凝结中测量负张力。这意味着在没有外部磁场的情况下自发出现此类涡旋的相位,将在高baryon密度下接管基态。这样的新相促进了QCD相图的理解,并与中子星内的磁场的产生有关。
II型超导体可以以通量管晶格的形式接收磁通量。磁通管晶体已在很久以前被阿布里科索夫(Abrikosov)在金茨堡 - 兰道理论[1]中预测,并在实验室的超导体中常规观察到[2,3]。它们也可能在由量子染色体动力学(QCD)控制的高能系统中起重要作用。例如,有人建议它们以核物质中的质子超导体的形式存在于中子恒星的内部[4-6]或夸克物质中的颜色超导体[7-9],并且可以在非零Isospin化学潜力的QCD相图中找到,以寄电的PION Condensate的形式[10]。在我们以前的工作中指出[11],II型超导性的元素也适用于无isospin化学潜力的带电的Pion冷凝,但在存在Baryon化学势的情况下,
1。T. P. Das和E. L. Hahn,核四极共振光谱,1958年2。William L O W,固体中的顺磁共振,1960年3。A.A. Maradudin,E。W。Montroll,G。H。Weiss和I. P. Ipatova,谐波近似中的晶格动力学理论,第二版,1971年4。Albert C. Beer,半导体中的驱动磁效应,1963年5。罗伯特·诺克斯(Robert S.S. amelinckx,直接观察错位,1964 7。James W. Corbett,《半导体和金属的电子辐射损伤》,1966年8。Jordan J. Markham,Alkali Halides的F-Centers,1966 9. Esther M. Conwell,《半导体中的高场运输》,1967年10。 C. B. Duke,固体中的隧道,1969年11月。 M. Cardona,调制光谱,1969年12。 A. A. Abrikosov,《正常金属理论简介》,1972年13。 P. M. Platzman和P. A. Wolff,固态等离子体中的波和相互作用,1973年14。 L. Liebert(客座编辑),液晶,1978年15。 Robert M. White和Theodore H. Geballe,固体中的远程顺序,1979年Jordan J. Markham,Alkali Halides的F-Centers,1966 9.Esther M. Conwell,《半导体中的高场运输》,1967年10。C. B. Duke,固体中的隧道,1969年11月。M. Cardona,调制光谱,1969年12。A.A. Abrikosov,《正常金属理论简介》,1972年13。P. M. Platzman和P. A. Wolff,固态等离子体中的波和相互作用,1973年14。L. Liebert(客座编辑),液晶,1978年15。Robert M. White和Theodore H. Geballe,固体中的远程顺序,1979年Robert M. White和Theodore H. Geballe,固体中的远程顺序,1979年
从基本的角度和这些材料的实际应用,了解II型超级导管中涡流的动力学至关重要[1-6]。在II型超导体中,当我们应用大于临界场h C 1大的磁场时,量化通量线(涡旋)会穿透样品。在干净的超导体中,涡流之间的相互作用将它们排列在三角形晶格中,称为Abrikosov [7]涡旋晶格(VL)。ever,固体中不可避免地存在晶体缺陷作为涡旋的随机固定潜力。If these vortices are made to oscillate under the influence of an oscillatory cur- rent or magnetic field, their motion is governed by the follow- ing competing forces [ 8 ]: (a) Lorentz force due to the external current density driving the motion, (b) restoring force due to the combined effect of pinning by crystalline defects and repulsion from neighbouring vortices, and (c) the dissipative viscous drag of the vortices.此外,在有限温度下,热激活会导致涡流自发
通量量子物质超导性是一种宏观量子现象,可在量子技术中找到应用,并允许工程各种混合系统。技术相关超导体的标志是存在磁通线,每种都带有一个磁通量量子 - Abrikosov涡流 - 并在存在外部磁场或传输电流的情况下出现。涡流与电流和田野,超导体中的结构缺陷以及彼此之间的相互作用,使它们成为一个有用的操场,用于研究具有竞争相互作用的多体系统,并允许将涡流用作超导电子产品中的元素构建块。在本演讲中,在简要介绍了超导性和涡旋问题的基础知识后,我将介绍我们的一些活动,尤其是重点是将超导体与其他材料和技术的结合在一起。也就是说,我将使用超导体/正常金属和超导体/半导体混合结构[1]进行微波辐射检测,以及超管制器/效率/效率激素/效率激流型(Spine Proves及其量子 - 量子 - 量子)的涡旋晶格与超管制器/效率激素/效能电脑/效率激素的相互作用[2] [2]。在高(几公里/s)涡流速度的状态下,这些研究产生了有关超导体中电荷载体的显微镜散射机制的信息,并且与单光子探测器的设计有关[3]。最后,作为一个新兴的研究方向,我将概述我们最近对3D超导体和铁磁纳米结构的研究,其中Meissner筛选电流的非平凡拓扑结构和磁化化分别确定了平面系统中未见的新状态[4]。
E. M. Lifshitz,Lev Davidovich Landau(1908-68)7 A. A. Abrikosov,回忆。 D. Landau 29 A. I. Akhiezer, Teacher and friend 36 N. E. Alekseevskii, Dau in the thirties 57 E. L. Andronikashvili, The Leningrad period in the life of young Professor Landau 60 V. B. Berestetskii, Studies on elementary particles 63 H. Casimir, Landau 67 D. S. Danin, The passionate sobriety of youth 78 D. S.达丁,如果世界上所有的科学家。 。 。 84 I. E. Dzyaloshinskii,Landau,通过学生的眼睛89 I. L. Fabelinskii,与L. D. Landau 97 E. L. Feinberg,Landau等人的一些会议105 V. L. Ginzburg,Ginzburg 117 V. L. Ginzburg,Remition of Remition of I. Gol. I. Giers, 136 L. P. Gor'kov,“年轻人” 143 Z. I. Gorobets,乘汽车进入山区146 B. L. Ioffe,如果Landau现在还活着153 M. I. Kaganov,Landau,Landau,我认识他157 I. M. Khalatnikov,Khalatnikov,Landau学校是如何开始的166 I. M. Khalatnikov,a dapte in 166 I. M. Khalatnikov,a Proins A. Kikoin,我如何成为Kharkov University 180 A. S. Kompaneets的老师,L。D. Landau担任教师184 B. G. Lazarev,我的记忆187 O. I. I. Martynova,不是很亲密的191 R. E. Peierls。 Pokrovskii,《科学与生活:与DAU的对话》 205E. M. Lifshitz,Lev Davidovich Landau(1908-68)7 A.A. Abrikosov,回忆。 D. Landau 29 A. I. Akhiezer, Teacher and friend 36 N. E. Alekseevskii, Dau in the thirties 57 E. L. Andronikashvili, The Leningrad period in the life of young Professor Landau 60 V. B. Berestetskii, Studies on elementary particles 63 H. Casimir, Landau 67 D. S. Danin, The passionate sobriety of youth 78 D. S.达丁,如果世界上所有的科学家。 。 。 84 I. E. Dzyaloshinskii,Landau,通过学生的眼睛89 I. L. Fabelinskii,与L. D. Landau 97 E. L. Feinberg,Landau等人的一些会议105 V. L. Ginzburg,Ginzburg 117 V. L. Ginzburg,Remition of Remition of I. Gol. I. Giers, 136 L. P. Gor'kov,“年轻人” 143 Z. I. Gorobets,乘汽车进入山区146 B. L. Ioffe,如果Landau现在还活着153 M. I. Kaganov,Landau,Landau,我认识他157 I. M. Khalatnikov,Khalatnikov,Landau学校是如何开始的166 I. M. Khalatnikov,a dapte in 166 I. M. Khalatnikov,a Proins A. Kikoin,我如何成为Kharkov University 180 A. S. Kompaneets的老师,L。D. Landau担任教师184 B. G. Lazarev,我的记忆187 O. I. I. Martynova,不是很亲密的191 R. E. Peierls。 Pokrovskii,《科学与生活:与DAU的对话》 205A. Abrikosov,回忆。D. Landau 29 A. I. Akhiezer, Teacher and friend 36 N. E. Alekseevskii, Dau in the thirties 57 E. L. Andronikashvili, The Leningrad period in the life of young Professor Landau 60 V. B. Berestetskii, Studies on elementary particles 63 H. Casimir, Landau 67 D. S. Danin, The passionate sobriety of youth 78 D. S.达丁,如果世界上所有的科学家。。。84 I. E. Dzyaloshinskii,Landau,通过学生的眼睛89 I. L. Fabelinskii,与L. D. Landau 97 E. L. Feinberg,Landau等人的一些会议105 V. L. Ginzburg,Ginzburg 117 V. L. Ginzburg,Remition of Remition of I. Gol. I. Giers, 136 L. P. Gor'kov,“年轻人” 143 Z. I. Gorobets,乘汽车进入山区146 B. L. Ioffe,如果Landau现在还活着153 M. I. Kaganov,Landau,Landau,我认识他157 I. M. Khalatnikov,Khalatnikov,Landau学校是如何开始的166 I. M. Khalatnikov,a dapte in 166 I. M. Khalatnikov,a Proins A. Kikoin,我如何成为Kharkov University 180 A. S. Kompaneets的老师,L。D. Landau担任教师184 B. G. Lazarev,我的记忆187 O. I. I. Martynova,不是很亲密的191 R. E. Peierls。 Pokrovskii,《科学与生活:与DAU的对话》 205
手性D波超导性。手性超导体由超导顺序参数和相关拓扑保护的手性手性边缘模式设置的有限的Chern号码。然而,边缘模式产生的手性边缘电流和轨道角动量(OAM)并非受到拓扑保护,因此需要另一种更健壮的实验探测器,以促进手掌D-波超导体的实验性验证。我们最近显示了手性D-波超导体中四倍定量的无芯涡旋(CVS)的外观,由封闭的域壁组成,该壁壁上装饰了八个分数涡流,并产生了Chern数量,手柄和超管配对对称性对称对称性的烟熏枪标志Holmvall和A. M. Black-Schaffer,物理学。修订版b 108,L100506(2023)]。特别是,CV自发地破坏了轴向对称性的平行性手性和涡度,并直接出现在局部密度(LDOS)中,可通过扫描隧道光谱(STS)测量。In this paper, we first demonstrate a strong tunability of the CV size and shape directly reflected in the LDOS and then show that the LDOS signature is robust in the presence of regular Abrikosov vortices, strong confinement, system and normal-state anisotropy, different Fermi surfaces (FSs), nondegenerate order parameters, and even nonmagnetic impurities.总而言之,我们的论文将CVS视为手性D波超导性的可调且可靠的标志。
腔量子电动力学通过将谐振器与非线性发射器 1 耦合来探索光的粒度,在现代量子信息科学和技术的发展中发挥了基础性作用。与此同时,凝聚态物理学领域因发现底层拓扑 2 – 4 而发生了革命性的变化,这种拓扑变化通常源于时间反演对称性的破缺,例如量子霍尔效应。在这项工作中,我们探索了拓扑非平凡的 Harper-Hofstadter 晶格 5 中 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器 6 的晶格,并通过引入亚铁磁体 7 来破缺时间反演对称性,然后再将系统耦合到 transmon 量子比特。我们用光谱方法分辨晶格的各个体模式和边缘模式,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导兰姆位移。最后,我们展示了利用 transmon 计数拓扑能带结构每个模式内单个光子 8 的能力。这项工作开辟了实验手性量子光学 9 领域,使微波光子的拓扑多体物理成为可能 10,11,并为背向散射弹性量子通信提供了途径。由光构成的材料是量子多体物理学的一个前沿 12 。依靠非线性发射器来产生强光子 - 光子相互作用和超低损耗超材料来操纵单个光子的属性,这个领域探索了凝聚态物理和量子光学的接口,同时生产用于操纵光的设备 13,14。最新研究成果表明,光子在具有拓扑特性15的光子中会经历圆形时间反转破缺轨道,这为探索诸如(分数)量子霍尔效应2、3、Abrikosov晶格16和拓扑绝缘体4等固态现象的光子类似物提供了机会。在电子材料中,圆形电子轨道是由磁或自旋轨道耦合4产生的。与电子不同,光子是电中性物体,因此不会直接与磁场耦合。因此,人们正在努力为光子生成合成磁场,并更广泛地探索在合成光子平台中拓扑量子物质的概念。光学和微波拓扑光子学都在这一领域取得了重大进展。在硅光子学 17、18 和光学 19、20 中,通过在偏振或空间模式中编码伪自旋,已经实现了合成规范场,同时保持了时间反转对称性。在射频和微波超材料中,已经探索了具有时间反转对称性 21、22 和破缺时间反转对称性的模型,其中时间反转对称性破缺由以下因素引起:
量子涡旋是量子超流体中的拓扑缺陷,在宏观尺度上,这些阶段揭示了量子性。量子涡流物质是一个有趣而多学科的研究领域[1-3],它吸引了理论家和实验家。虽然在超级流体制度中深处的精力激励上,但涡流的凝结为理解相邻的非沉积阶段和相关的相变提供了自然框架[4-6]。在旋转整个系统的情况下,在低温下出现了超流体涡流中的丰度[7-10]。正如Abrikosov [11]在外部磁场中与II型超导体紧密相关的上下文中首先发现的,在热力学极限下,常规涡流晶体基态可以出现。它会自发打破(磁)翻译和旋转对称性。在二维极限中,对低能集体激发(称为Tkachenko Waves [12])的研究一直是广泛理论上的主题,如[13 - 24]这样的作品所证明的。此外,在冷原子实验中,在极低的温度下成功地进行了对Tkachenko波的实验观察[25]。值得注意的是,也有人建议Tkachenko模式可以解释脉冲星的动力学[26]。鉴于涡旋的两个横向笛卡尔坐标构成了一对规范的变量[8,27 - 29],因此涡旋代表了固有的模糊实体,其本质上的模糊实体与不成比例的面积与基本玻色子密度成反比。因此,随着晶体内的涡流密度接近玻色子密度的大小,涡旋位置中的量子机械波动与涡流之间的距离相当。粗略估计依赖于Lindemann标准和小规模的精确对角线数值模拟,表明当填充分数大约在1到10之间时,涡流晶体会在零温度下实现量子熔化[8]。在这里,填充分数在以下内容中称为ν,定义为玻色子密度n b和涡流密度,n v之间的比率。这种量子熔化现象的确切性质仍然很糟糕,代表了该领域的长期挑战。分形式弹性双重性[30 - 37]及其前身[38 - 42]提供了一种出色的框架,以研究可能的熔融机制,因为它自然融合了脱节和错位,这些脱位和位错是固体中拓扑缺陷[43]。一个人也可以轻松地掺入va-cancy和间质缺陷[31,34]。在这种形式主义中,量子熔化可以通过一系列的相变实现,其中动态缺陷场扮演了希格斯字段的作用。这种方法在[44]中率先进行的涡流晶体研究中发现了实际应用。除了对各种缺陷之间的静态相互作用的计算之外,这还发现了几个连续的量子希格斯过渡,这些过渡是由缺陷的凝结触发的。在本文中,我们提供了有关二维超氟涡流晶体量子熔化的新见解。值得注意的是,发现涡流晶体的量子熔化可能是由空缺或间质的凝结来提到的,导致最初在经典的有限限制性问题中研究的含量涡旋超固体的出现[45,46]。我们的起点是tkachenko模式的有效理论,在二次近似中,该理论降低了紧凑型标量场的Lifshitz理论[21,24,46,47]。这是快速旋转极限的超氟涡流晶体的良好粗粒描述,其中冷凝水仅占据了最低的Landau水平。在该领域理论中,我们讨论了对称范围的磁性顶点算子的命运,这些磁性顶点算子在特殊条件下与涡流晶体中的空位和间质缺陷相对应。从先前的工作中汲取灵感[5,48],我们确定哪种填充ν这样的磁性顶点操作员在重生群体(RG)sense