非蒸发的液体燃料膜是汽油直接注入发动机烟灰形成的主要原因。在这项研究中,开发了一种UV-VIS吸收技术,以在加热的恒流实验中直接注射后的燃料膜厚度成像。一个六孔GDI喷油器将燃料在100栏上喷涂到距喷嘴30毫米的透明板上。燃料由30%甲苯 / 70%的Iso-octane(分别为383和372 K)组成。气体和壁温度分别为376和352 K,气压1 bar。燃料的蒸发部分被点燃,随后的燃烧膜旁边的燃烧导致了烟灰的形成。在加剧的高速CMOS摄像头上成像了从脉冲LED照明中传输散射的背光。液态甲苯的紫外线吸光度为265 nm的LED。然而,在这种波长下,甲苯蒸气吸收,液体散射,烟灰和烟灰前体的灭绝以及烟灰白幕都干扰了液体燃料的吸光度。为了估计散射和烟灰消光的贡献,将310、365和520 nm处的LED添加到梁路径中,并以32 kHz的帧速率在高速摄像头上与连续的帧相吻合。获得了一个深色框架以说明烟灰阴影,以使所得5图像序列的重复速率为6.4 kHz。通过在先前的工作中开发的形态图像处理估算了甲苯蒸气的吸收,以将弥漫性的,移动的蒸气云与燃料膜的锋利,固定特征分开。允许获得时空分辨的燃油膜厚度测量和有关烟灰的其他信息的多光谱方法。
作为迅速扩展的2D材料家族,MXENES最近引起了人们的关注。通过开发一种涂层方法,该方法可实现无传输和逐层膜涂层,研究了Ti 3 C 2 t x mxeneFim的非线性光吸收(NOA)。使用Z扫描技术,MXENEFILM的NOA在≈800nm处的特征。结果表明,随着层数从5增加到30的增加,从反向吸收吸收(RSA)转变为可饱和吸收(SA)。值得注意的是,非线性吸收系数的β变化从≈7.1310 2 cm GW 1到在此范围内的2.69 10 2 cm GW 1。也表征了MXENEFIM的功率依赖性NOA,并且观察到β的趋势下降以增加激光强度。最后,在≈1550nm处的2D mxene纤维的NOA的特征是将它们整合到氮化硅波导上,在其中观察到薄膜的SA行为,包括5和10层MXENE,与在≈800nm处观察到的RSA相反。这些结果揭示了2D MXENEFM的有趣的非线性光学性质,突出了它们的多功能性和实现高性能非线性光子设备的潜力。
本文简要回顾了碳多孔结构中原子和分子吸收领域的最新发展。此类吸收体在众多碳多孔材料中显而易见,因为它们具有极高的吸收能力,可以在实验中观察到,而这些物质在通常条件下在多孔基质外部可能仅以气态形式存在。高容量填充是由于单个石墨烯状壁将整个结构中的不同单元隔开,从而提供了轻质材料。多孔结构的这种特性使其在许多技术应用中非常有前景,例如燃料电池中的氢存储和由此类结构制成的膜中的分子筛,或其在微电子、光伏和锂离子电池生产中的应用。无论目标应用如何,气体都是碳基质本身探测测试的良好候选者。
在线存放在白玫瑰研究中的重用项目受版权保护,除非另有说明,否则保留所有权利。可以下载和/或印刷供私人学习,或者按照国家版权法所允许的其他行为。发布者或其他权利持有人可以允许进一步复制和重新使用全文版本。这是通过该项目的白玫瑰研究在线记录的许可信息来指示的。
近年来,随着微波加热,雷达和航空航天的持续发展,人们越来越关注微波炉吸收材料(MAM),并且其开发和应用越来越广泛。在民用用途中,微波炉被广泛用于通信,雷达检测和其他领域[1,2]。这不仅为人类活动提供了便利,而且还导致严重的电磁波吸收(EMA)污染和电磁干扰[3,4]。在军事中,微波雷达已在各个国家广泛使用,并已成为一种无处不在的反坦健康技术,该技术已成为与国家安全有关的重要问题[5,6]。因此,全世界的研究人员致力于研究新的妈妈,希望能有效地吸收EWA来解决上述问题。bionics是一种模拟设计技术系统中生物学原理的领域,旨在赋予人工系统具有相似甚至卓越的生物学功能[7,8]。通过显微镜技术的进步,已经揭示了有机体在视觉上出现“普通”但具有显着功能的生物具有复杂的微观结构。这些功能不仅源于原子或分子排列,而是源于“功能原始素”的顺序组装,该组件组成几个比分子和原子大的数量级[9-11]。如图1,仿生象征的物体包括各种生物,从动物和植物到人体器官[12]。bionics通过两个主要方面实现了其目标:结构性培训和功能性生物学。结构仿生学涉及代表生物体的宏观或微观体系结构以达到意外目的[13]。同时,功能仿生学模仿了生物体固有的机械,光学,声学,电气和磁能力。例如,荷叶叶子的微纳维尔乳头“乳头”结构,由蜡质材料组成,可以实现超氧化和自我清洁的特性[14]。另外,变色龙体内的鸟嘌呤颗粒的周期性排列形成天然光子晶体,表现出动态的颜色范围[15],说明了功能仿生的丰富性和复杂性。此外,值得注意的是,化学成分在仿生学中也起着作用,因为它通常决定了独特的特性
双原子分子代码 [VV Albert, JP Covey 和 J. Preskill, Robust encoding of a qubit in a molecule, Phys. Rev. X 10, 031050 (2020). ] 旨在将量子信息编码在双原子分子的方向上,从而能够校正小扭矩和角动量变化带来的错误。在这里,我们直接研究原子和分子平台固有的噪声——自发发射、杂散电磁场和拉曼散射——并表明双原子分子代码无法抵御这种噪声。我们推导出足以使代码免受此类噪声影响的简单条件。我们还确定了现有的并开发了新的吸收-发射 (Æ) 代码,这些代码比分子代码更实用,需要更低的平均动量,可以直接抵御任意阶的光子过程,并且适用于更广泛的原子和分子系统。
质谱成像 (MSI) 正在成为一种强大的分析工具,可通过对薄组织切片进行原位质谱分析,对内源性和外源性分子进行检测、量化和同时进行空间分子成像,而无需化学标记。MSI 可生成所施用药物和代谢物的化学特异性和空间分辨的离子分布信息,这可用于涉及药物吸收、分布、代谢、排泄和毒性 (ADMET) 各个阶段的研究的众多应用。基于 MSI 的药代动力学成像分析提供了有关动态药物分布和代谢过程的组织学背景和细胞环境,并有助于了解药物的空间药代动力学和药效学特性。在此,我们讨论了 MSI 的当前技术发展,这些技术可提供临床前和临床组织标本中小分子药物、抗体和寡核苷酸大分子药物及其代谢物的定性、定量和空间位置信息。我们重点介绍全身、脑、肺、肝、肾、胃、肠组织切片、类器官中的宏观和微观药物分布,以及 MSI 在药物 ADMET 研究中的最新应用。
连贯的完美吸收器利用光的干涉性质,将所有光场的入射能量沉积到原本弱吸收的样品中。这个概念的缺点是,相干吸收剂中必要的破坏性干扰很容易通过频谱或空间破坏传入的光场破坏。最近通过特殊点物理学和使用退化的腔体的见解克服了这两个局限性。在这里,我们展示了如何将这两个概念组合到新型的腔设计中,从而允许宽带特殊的点吸收任意波前。我们提出了这种大规模退化的特殊点吸收器的两个可能的实现,并将分析结果与数值模拟进行了比较。
在生态有效背景下描述文本阅读背后的大脑活动,并确定这些活动的某些方面是否独立于一个人的认知吸收 (CA) 状态,这是认知神经科学中重要但尚未探索的研究方向。这项研究调查了 25 名人类受试者在观看现场戏剧舞台表演时与文本阅读相关的眼动行为和脑电图 (EEG) 活动,并进一步评估了与自我感知 CA 的关系。从行为上讲,受试者预期文本的出现,并以独立于 CA 的方式看待它。从神经生理学上讲,文本存在/不存在主要通过 EEG θ 活动和视觉空间处理区域内或之间的 β 连接来区分。重要的是,文本存在相关的额叶眼区 θ 活动增加和楔前叶与初级视觉皮层之间的 β 连接与 CA 无关,表明文本阅读行为的自动化中存在潜在作用。
农业活动是影响气候的温室气体排放的重要来源,例如牲畜耕作,肥料管理,化肥的使用和土地使用变化。但是,农业用地和森林地区在吸收和隔离温室气体方面也起着至关重要的作用。森林地区是特别有效的碳汇。森林中的树木和植被通过光合作用从大气中吸收二氧化碳,并以生物质形式储存碳。森林土壤在储存碳中含有有机物掉落到地面的碳中起作用。尽管农业地区吸收温室气体的潜力比森林地区较少,因为从森林到农业土地的土地利用变化减少了碳固执,但如果实施可持续的农业实践,农业地区仍然可以在温室气体隔离中发挥作用。这些做法包括耕作,覆盖作物,适当的土壤管理以及在综合农业系统中种植多年生树。这项研究的目标是:1)评估农业地区和红树林的温室气体吸收能力,这是维持气候平衡的关键因素。2)提高社区对资源和环境管理的认识。