摘要 - 在越野环境中旋转的未拧紧地面车辆(UGV)的准确路径跟踪面临着源于操作条件的多样性引起的挑战。用于Ackermann转导车辆的传统基于模型的控制器具有良好的(无防滑)路径跟踪的穿孔,但性能会以越来越不平坦的地形和更快的遍历速度下降。本文介绍了一种新颖的方法,一种混合深化增强学习(HDRL)控制器,利用了线性二次调节器(LQR)的优势和深钢筋学习(DRL)控制器,以增强Ackermann steceered ugvs的增强路径跟踪。DRL控制器主要弥补地形条件和未知车辆参数的不确定性,但训练在计算上可能很昂贵。LQR控制器在初始训练阶段指导DRL控制器,从而确保更稳定的性能并在早期迭代中获得更高的回报。这样做,这种混合方法提供了有望克服基于模型的控制器的局限性以及常规DRL方法的样本信息的局限性。在手稿中显示的初步结果显示了HDRL控制器的希望,表现出比无模型的DRL和常规反馈控制器更好的性能。
摘要:自动驾驶汽车(AV)的路径跟踪控制性能至关重要地取决于建模选择和随后的系统识别更新。传统上,汽车工程已经建立在增加白色和灰色框模型以及系统识别的忠诚度之后。尽管这些模型具有解释性,但它们会遭受建模不准确,非线性和参数变化的困扰。在另一端,端到端的黑框方法(例如行为克隆和增强学习)提供了提高的适应性,但以解释性,可推广性和SIM2REAL间隙为代价。在这方面,诸如Koopman扩展动态模式分解(KEDMD)之类的混合数据驱动技术可以通过选择“提升功能”来实现非线性动力学的线性嵌入。但是,该方法的成功主要基于提升函数和优化参数的选择。在这项研究中,我们提出了一种分析方法,使用迭代的谎言支架向量字段来构建这些提升功能,考虑了我们Ackermann Steceer的自主移动机器人的配置歧管上的载体和非独立限制。使用标准车辆动力学操纵的轨迹跟踪以及沿闭环赛车轨道进行了轨迹跟踪,显示了所获得的线性KEDMD模型的预测和控制功能。