植物病原体通过在自然和农业环境中引起破坏性植物疾病对农作物的生产力和产量构成了破坏性的威胁。半野生病原体在转向坏死之前具有可变的长度生物营养相,并且是最具侵入性的植物病原体之一。植物对半野生病原体的耐药性主要依赖于先天免疫反应的激活。这些反应通常是在植物质膜和各种植物免疫受体检测到与病原体感染相关的免疫原性信号后开始的。半野生病原体逃避病原体,通过在军备竞赛中掩盖自己,同时还增强或操纵其他受体以促进毒力,从而触发了免疫力。然而,由于复杂的感染机制,我们对植物免疫防御剂的理解受到高度限制。在这篇综述中,我们总结了不同半野生病原体与宿主免疫受体相互作用以激活植物免疫的策略。我们还讨论了质膜在植物免疫反应中的重要作用,以及该领域的当前障碍和潜在的未来研究方向。这将使对半野生病原体的致病性以及植物免疫受体如何反对它们的致病性有更全面的了解,从而为预防和管理植物疾病提供了宝贵的数据。
摘要背景社区卫生中心和农村和农业社区的患者在面对健康差异和技术障碍的情况下难以解决糖尿病和高血压。在2019年冠状病毒疾病大流行期间突出了这些数字健康差异的鲜明现实。目的是激活(山谷中的问责制,协调和远程健康以实现转型和公平)的目标,是为了编码一个远程患者监测和慢性病管理计划的平台,以解决这些差异,并提供解决社区需求和背景的解决方案。方法激活是在三个阶段实施的数字健康干预措施:社区代码,可行性评估和试点阶段。预分和后结局包括针对患有高血压患者的糖尿病和血压的参与者定期收集的血红蛋白A1C(A1C)。结果参与者是成年患者,患有不受控制的糖尿病和/或超张力(n¼50)。大多数是白人和西班牙裔或拉丁裔(84%),西班牙语为主要语言(69%),平均年龄为55。该技术有大量采用和使用:超过10,000多种葡萄糖和血压测量在6个月内使用连接的远程监测设备传输。患有糖尿病的参与者在3个月时在3个月中的A1C平均降低为3.28个百分点(标准偏差[SD]:2.81),在6个月中平均降低了4.19个百分点(SD:2.69)。绝大多数患者在目标范围内达到了A1C的控制(7.0 - 8.0%)。患有高血压的参与者在3个月时在3个月时降低了14.81 mm Hg(SD:21.40)的14.81 mm Hg(SD:21.40),在6个月时,较小的舒张压降低。大多数参与者也达到了目标血压(小于130/80)。
PTDINS(3,4,5)p $依赖性蛋白激酶B(PKB)通过3-磷酸肌醇依赖性蛋白激酶-1和-2(分别为PDK1和PDK2)(分别为PDK1和PDK2)是介导信号激活PTDINS 3-KINASE的信号的关键事件。血清和糖皮质激素调节的蛋白激酶(SGK)的催化结构域与PKB相同,尽管缺乏PTDINS(3,4,5)P $ $ - 结合Pleckstrin sologology in and Phosplosed pleckstrin sogy and phosplosed#phosplosptried#phosphored#phsphosphored&pdk1 and pdk2 in ther #2k2 and pdk2 and pdk2 in in #2k2 in thy #2k2 SGK。在这里我们表明PDK1通过磷酸化thr#&'激活ITRO中的SGK。我们还表明,在响应胰岛素样生长因子-1(IGF-1)或过氧化氢时,转染的SGK通过PTDINS 3-激酶依赖性途径在293个细胞中激活,涉及THR#&'和Ser%##的磷酸化。PDK1在ITRO中激活SGK在ptdins(3,4,5)p $中不影响Ser%##向AlA废除,并且由于SER%##的突变## ser%##对ASP的突变大大增强(尽管这种突变没有激活SGK本身)。与这些发现一致,
1个黑色素瘤免疫学和肿瘤学小组,悉尼大学百年研究所,澳大利亚新南威尔士州Camperdown。2澳大利亚黑色素瘤学院,澳大利亚悉尼乌鸦巢,澳大利亚。 3中央临床学校,悉尼大学,澳大利亚新南威尔士州坎珀纳市,澳大利亚4彼得·麦卡勒姆癌症中心,澳大利亚维多利亚州墨尔本5彼得·麦卡卢姆爵士肿瘤学系,墨尔本大学,帕克维尔大学,维多利亚大学,澳大利亚维多利亚大学,澳大利亚帕克维尔大学,澳大利亚6号病理学。 7 Maurice Wilkins分子生物发现中心,新西兰奥克兰Symonds Street 3A级2级,麦格理大学医学,健康与人类科学学院生物医学科学系8。 9马萨诸塞州皮肤病学系皮肤生物学研究中心,哈佛大学综合医院2澳大利亚黑色素瘤学院,澳大利亚悉尼乌鸦巢,澳大利亚。3中央临床学校,悉尼大学,澳大利亚新南威尔士州坎珀纳市,澳大利亚4彼得·麦卡勒姆癌症中心,澳大利亚维多利亚州墨尔本5彼得·麦卡卢姆爵士肿瘤学系,墨尔本大学,帕克维尔大学,维多利亚大学,澳大利亚维多利亚大学,澳大利亚帕克维尔大学,澳大利亚6号病理学。7 Maurice Wilkins分子生物发现中心,新西兰奥克兰Symonds Street 3A级2级,麦格理大学医学,健康与人类科学学院生物医学科学系8。9马萨诸塞州皮肤病学系皮肤生物学研究中心,哈佛大学综合医院
背景:HIV感染严重破坏了口服微生物组,增加了革兰氏阴性细菌的存在,例如牙龈卟啉单胞菌(P. gingivalis),在超过80%的病例中检测到。牙龈疟原虫分泌脂多糖(LPS),这是一种有效的免疫刺激剂,即使在抗逆转录病毒疗法(CART)治疗的HIV患者(PWH)中,也会损害原发性人类口服角质形成细胞(HOK)。HOK细胞通过激活炎性体复合物(包括DNA敏感性炎性体蛋白)来应对细菌和病毒刺激。虽然众所周知,仅LPS会触发规范和非经典途径,导致炎症体激活,但我们的研究研究了HIV暴露与LPS如何与LPS协同诱导HOK中的炎症反应。我们假设HOK暴露素HOK细胞可增强对LP的AIM2激活,从而导致慢性炎症和免疫失调的增加 - 在PWH中。
转录因子与序列基序结合,并充当敏捷因子或阻遏物。带有辅助辅因子星座的转录因子界面,以调节调节转录的不同机械步骤。我们迅速降低了必需和普遍表达的转录因子Znf143,以确定其在转录周期中的功能。ZNF143促进RNA聚合酶起始并激活基因表达。ZNF143结合其几乎所有活化靶基因的启动子。Znf143还结合了遗传转录启动位点,直接抑制基因的子集。尽管Znf143刺激了Znf143抑制基因的启动(即那些在Znf143 depletion上增加表达的人,结合的分子环境会导致顺式代表。Znf143与其他更有效的激活因子竞争启动子的访问,物理遮挡了转录起始位点和启动子序列序列元素,并在早期eLon-grongation期间充当了RNA聚合酶的分子障碍。通常调用上下文术语上下文来描述具有激活和抑制函数的转录因子。我们定义了ZnF143介导的顺式激活和抑制的上下文和分子机制。
抽象背景尽管当前批准的免疫疗法,包括嵌合抗原受体T细胞和检查点阻断抗体,已成功用于治疗血液学和一些实体瘤癌,但许多实体瘤仍然对这些治疗方式具有抗性。在实体瘤中,有效的抗肿瘤免疫反应的发展受到免疫细胞浸润和免疫抑制性肿瘤微环境(TME)的阻碍。一种免疫疗法,浸润和持续存在于固体TME中,同时提供局部稳定的治疗水平以激活或恢复活力的抗肿瘤免疫力可以克服当前免疫治疗所面临的这些挑战。使用慢病毒驱动工程的方法,我们对人类和鼠巨噬细胞进行了编程,以表达治疗有效载荷,包括白介素(IL)-12。体外共培养研究用于评估分泌IL-12对T细胞和宝石本身的基因工程巨噬细胞(GEM)的影响。在胶质母细胞瘤和黑色素瘤的合成小鼠模型以及从晚期胃肠道恶性肿瘤患者中分离出的胶质母细胞瘤和黑色素片的合成小鼠模型中,评估了IL-12 GEM对TME内基因表达谱的影响和肿瘤负担。在这里结果,我们使用慢病毒驱动的人和小鼠巨噬细胞的遗传工程提出了一个细胞免疫疗法平台,以组成表达蛋白质,包括分泌的细胞因子和全长检查点抗体,以及细胞质和表面蛋白质和表面蛋白质,从而弥补了这些障碍。在合成性胶质母细胞瘤模型中,在用小鼠骨 - 箭头处理的小鼠中也观察到IFNγ信号级联 -在异种移植小鼠的胶质母细胞瘤模型中持续,持续并表达慢病毒有效载荷,并表达非信号传导截短的CD19表面蛋白以消除。iL-12分泌的宝石在体外激活了T细胞,并在体外诱导了干扰素 - γ(IFNγ),并减慢了肿瘤的生长,从而在体内延长了存活率。
带有检查点抑制剂的抽象背景免疫疗法,尤其是那些针对编程的死亡受体1(PD-1)/PD-1配体(PD-L1)的免疫疗法,越来越多地被认为是恶性肿瘤的高度有希望的治疗方式。然而,限制了免疫检查点阻滞治疗在治疗胶质母细胞瘤(GBM)中的效率。因此,必须扩大我们对GBM免疫逃逸(IE)背后的分子机制的理解。进行蛋白质芯片分析以在PD-1抑制剂敏感或抗性GBM中异常表达的OMA1蛋白筛选。在此,采用了公共数据库和生物信息学分析来研究OMA1和PD-L1关系。然后,通过不同的实验方法在初级GBM细胞系中验证了这种预测的关系。在免疫抑制中研究OMA1背后的分子机制,采用了一系列实验方法,包括蛋白质印迹,共免疫沉淀(CO-IP),质谱法(MS),免疫荧光,免疫荧光,免疫组织,免疫组织化学和QRT-PCR。结果我们的发现表明,OMA1竞争性结合HSPA9以诱导线粒体并介导GBM的IE。来自TCGA的数据表明OMA1与免疫抑制之间存在显着相关性。OMA1促进了GBM患者的原代细胞中的PD-L1水平。接下来,在GBM原代细胞上进行的Co-IP和MS的结果表明OMA1与HSPA9相互作用并诱导线粒体。OMA1不仅通过增加线粒体DNA释放,还通过激活CGAS插入来促进CGAS插入活性。最终,已经发现OMA1通过调节PD-1结合和PD-L1介导的T细胞毒性来诱导GBM中的免疫逃避。结论OMA1/HSPA9/CGAS/PD-L1轴在我们的研究中被阐明为GBM中新鉴定的免疫治疗靶标。
椎间盘变性(IDD)是椎间盘疼痛的主要原因,归因于Pulposus核,环螺旋体和软骨端板(CEP)的功能障碍。糖蛋白(opn),一种糖蛋白,在CEP中高度表达。然而,关于OPN如何调节CEP稳态和变性,鲜为人知,导致IDD的发病机理,知之甚少。在这里,我们研究了OPN在腰椎不稳定性引起的小鼠IDD模型中的作用,及其对病理条件下终板软骨细胞(EPC)变性的影响。OPN主要在CEP中表达,并且在患有严重IDD的小鼠和人类患者中随着变性而降低。成年小鼠EPC中有条件的SPP1敲除可以增强与年龄相关的CEP变性,并在IDD期间加速CEP重塑。从机理上讲,OPN的缺乏率会增加EPC中的CCL2和CCL5的产生,从而募集巨噬细胞,并增强NLRP3插入式肿瘤和NF-κB信号的激活,通过促进IRAK1-TRAF6复合物的组装,使CEP Demenerate促进Spatiotemal模式中的CEP Demeneration。更重要的是,对NF-κB/NLRP3轴的药理抑制作用减弱了OPN降低的IDD小鼠的CEP变性。总体而言,这项研究强调了OPN在维持CEP和椎间盘稳态中的重要性,并通过针对NF-κB/NLRP3轴提出了有希望的IDD治疗策略。
(David.bikard@pasteur.fr),B.W。(bwiedenheft@gmail.com)和A.I.(artem.isaev@skoltech.ru)