hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
我们在现象学上制定并在实验上观察到通过人工倾斜多层(ATML)中的热电流重新定位增强了绝热的热电转换。通过交替堆叠具有不同导电性的两种材料,并相对于纵向温度梯度旋转其多层结构,诱导导热性张量中的非分子分量。这种非对角线热传导(ODTC)在绝热条件下产生有限的横向温度梯度,并在绝热条件下产生了seebeck效应诱导的热电器,该温度是由异热横向热电器上置于由外diagonal驱动的热量热电器上的。在这项研究中,我们计算和观察包括热电CO 2 MNGA Heusler合金和BI 2-A SB A TE 3化合物的ATML中的二维温度分布以及所得的横向热电器。通过将倾斜角从0°更改为90°,横向温度梯度显然出现在中间角度,横向热电图在CO 2 MNGA/BI 0.2 MNGA/BI 0.2 SB 1.8 TE 3 te 3 te 3 te的ATML中以45°的倾斜度为45°的ATML,均来自45°的贡献。这种从ODTC得出的混合动作导致横向热电转化率最大降低效率的显着差异从等热极限的3.1%到绝热极限的8.1%。
然后我们使用量子绝热算法尝试准备 H 1 的基态 | ϕ 1 ⟩。这样的状态必须是 h 的最小化器的线性组合,因此测量状态必须返回 h 的最小化器。剩下的就是指定初始汉密尔顿量 H 0 。一种简单的方法是再次选择对角汉密尔顿量,例如 H 0 = I −| 0 n ⟩⟨ 0 n | 或 H 0 = − P j Z j ,其中 Z j 是将 Pauli Z 门应用于第 j 个量子位同时保持其他量子位不变的简写。两个汉密尔顿量都有一个唯一的(并且准备起来很简单)基态 | 0 n ⟩ 。
量子绝热定理是时间相关量子系统的基础,但能够定量表征多体系统中的绝热演化却是一项挑战。这项工作表明,使用适当的状态和粒子密度度量是一种可行的方法,可以定量确定量子多体系统动态中的绝热程度。该方法还适用于有限温度下的系统,这对于量子技术和量子热力学相关协议非常重要。通过与将量子绝热标准扩展到有限温度所获得的结果进行比较,讨论了考虑记忆效应的重要性:结果表明,这可能会产生构造上为准马尔可夫的错误读数。由于所提出的方法可以通过仅跟踪系统局部粒子密度来表征绝热演化的程度,因此它可能适用于非常大的多体系统的理论计算和实验。
摘要 本研究提出了一种创新技术,基于一种高效的低功耗 VLSI 方法,设计用于信号和图像处理中混频电路应用的 4 位阵列乘法器。建议的架构使用近阈值区域的绝热方法来优化传播延迟和功耗之间的权衡。乘法器是许多数字电子环境中必不可少的组件,因此诞生了许多针对特定应用定制的乘法器类型。与传统 CMOS 技术相比,该技术显著降低了动态和静态功耗。近阈值绝热逻辑 (NTAL) 使用单个时变电源实现,从而简化了时钟树管理并提高了能源效率。使用 Tanner EDA 工具和 Spectre 模拟器在 TSMC 65 nm 技术节点上对建议的设计进行仿真,以确保验证优化结果。与典型的 CMOS 方法相比,在保持相似设计参数的情况下,可变频率、电源电压和负载电容的功耗分别显著改善了约 66.6%、14.4% 和 64.6%。值得注意的是,随着频率变化,负载电容保持恒定在 C load = 10 pF 和 VDD (max) = 1.2 V;随着电源电压变化,负载电容保持恒定在 C load = 10 pF 和频率 F = 4 GHz;随着负载电容变化,频率保持在 F = 4 GHz 和电源电压 VDD (max) = 1.2 V。关键词:- 4 位阵列乘法器、绝热逻辑、低功耗 VLSI、近阈值区域、NTAL 方法、TSMC 65 nm CMOS 技术、混频器电路、信号和图像处理、能源效率、Tanner EDA、Spectre 模拟器和功耗优化。
摘要这项研究为基于有效的低功率VLSI方法设计了一种在信号和图像处理中设计的4位阵列乘数的创新技术。建议的架构使用近阈值区域的绝热方法来优化传播延迟和耗能之间的权衡。乘数是许多数字电子环境中必不可少的组成部分,导致了许多针对某些应用程序定制的乘数类型的诞生。与传统的CMOS技术相比,该技术大大降低了动态和静态功率耗散。接近阈值绝热逻辑(NTAL)是使用单个时间变化的电源实现的,这简化了时钟树的管理并提高了能源效率。使用Tanner EDA工具和幽灵模拟器在TSMC 65 nm技术节点上模拟了建议的设计,并确保验证了优化的结果。与典型的CMOS方法相比,在保持相似的设计参数的同时,可变频率,电源电压和负载电容的功率耗散大约有66.6%,14.4%和64.6%的显着提高。值得注意的是,随着频率变化,负载电容在C负载= 10 pf和vdd(max)= 1.2 V时保持恒定。随着电源电压的变化,负载电容在C负载= 10 pf时保持恒定,而频率为f = 4 GHz; and with load capacitance variation, the frequency is maintained at F = 4 GHz and the supply voltage at VDD (max) = 1.2 V. Keywords: - 4-bit array multiplier, adiabatic logic, low-power VLSI, Near Threshold Region, NTAL approach, TSMC 65 nm CMOS technology, mixer circuit, signal and image processing, energy efficiency, Tanner EDA, Spectre simulator, and功率耗散优化。
中型和长期储能系统有望在朝着由可再生能源提供动力的电网的过渡中起关键作用。ACAE是一种有前途的解决方案,能够分别处理数百个MW和MWH的功率和能量等级。ACAE的一个挑战是在随着空气储存的压力发生变化时,在系统中遇到的条件范围内实现了压缩机中所需的高效操作。在本文中,设计了面向应用程序的轴向流压缩机,旨在在整个操作范围内有效地操作,同时还将性能预测与实用的压缩机几何形状相关联。已经实现了基于Inviscid的两步设计方法,已实现了轴对称流条件,导致流track,叶片行几何形状和压缩机性能图。压缩机模型被整合到ACAES模型中,包括两个压缩线轴,两个具有预热的膨胀阶段,恒定体积的高压存储在5.5至7.7 MPa之间以及两个独立的热量储能单元。现有的ACAE文献要么忽略瞬态外部设计操作或使用通用数值相关性(与特定几何相关),但本文的关键新颖性是将涡轮机械设计详细的设计方法应用于ACAE。最后,建议对其他组件进行类似的审查(即扩展器,热交换器和TES单位),请记住ACAE的独特操作要求。结果表明,设计的压缩机需要在两个线轴上进行33个阶段,并且能够在存储压力范围内有效地操作,这表明,如果将面向应用的设计程序应用于压缩机,则不会阻止ACAES达到70%的圆形效率,从而输出35MW的35MW,以达到约15 h。重要的是,通过减少中冷器的数量来满足在较高温度下保存热量的特定ACAE要求。这项工作是消除普遍误解的重要一步,即可以在典型的ACAE设计中轻松地使用现成的组件。
我们报告了Millikelvin绝热去磁性消防制冷(MK-ADR)候选材料Naybgeo 4的合成,表征,低温磁和热力学测量值,该候选物质Naybgeo 4表现出扭曲的YBO 6磁性单元的平方晶格。磁化强度和特定热量表明弱相互作用的有效自旋1 /2低于10 K的有效自旋1 /2矩,质量 - 韦斯温度仅为15 mk,可以通过1 t级的磁场进行偏振。对于ADR性能测试,我们启动了从5 t的温度下的5 t启动〜2 k的温度,并达到〜2 k的温度,并达到150毫克的最低温度。变暖曲线表明在210 MK处的热容量中的磁性急剧过渡,这仅表示磁性弱弱。与在相似条件下研究的沮丧的ytterbium-Ox-odr ADR材料相比,S GS≃101MJ K-1 cm-3的熵密度并保持低于2 k的2 k的时间是竞争性的,而最小温度则更高。
传统 CMOS 逻辑的能效正在快速接近实际极限,而这最终源于基本的物理考虑。根据 IRDS 路线图,到 2030 年左右,最小典型逻辑信号能量预计将降至最低,约为 0.2 fJ (1.25 keV)。这将加剧可实现的设备密度(随着行业转向 3D VLSI 技术,该技术可以在一个制造过程中集成多个“层”有源设备,设备密度将继续增加)与芯片封装内功率耗散密度保持可控的需求之间的矛盾。实际上,这些限制将导致实际芯片设计中潜在可用的设备数量资源越来越未得到充分利用,加剧了目前已经存在的“暗硅”问题。