本文介绍了一种新颖的胎儿脑部自动生物测量方法,该方法旨在满足中低收入国家的需求。具体而言,我们利用高端 (HE) 超声图像为低成本 (LC) 临床超声图像构建生物测量解决方案。我们提出了一种新颖的无监督域自适应方法来训练深度模型,使其对图像类型之间显著的图像分布变化保持不变。我们提出的方法采用双对抗校准 (DAC) 框架,由对抗途径组成,可强制模型对以下方面保持不变:i) 来自 LC 图像的特征空间中的对抗性扰动,以及 ii) 外观域差异。我们的双对抗校准方法估计低成本超声设备图像上的小脑直径和头围,平均绝对误差 (MAE) 为 2.43 毫米和 1.65 毫米,而 SOTA 分别为 7.28 毫米和 5.65 毫米。
在这项研究中,我们评估了自主驾驶(AD)系统中增强学习的鲁棒性(RL),特别是反对对抗攻击的稳健性。我们采用了Karavolos等人提出的基于Q学习的AD模型。[1]的简单性,是我们分析的基础。此选择使我们能够在简单的Q学习方法和更复杂的RL系统之间进行明显的比较。我们设计了两个威胁模型,以模拟对基于RL的广告系统的对抗性攻击。第一个模型涉及在RL模型的细调中注入未发现的恶意代码,使其容易受到对抗性扰动的影响,这可能会导致在特定的触发条件下碰撞。第二个威胁模型旨在通过直接改变RL模型在特定触发条件下的行动决策来引起碰撞,这代表了一种更隐秘的方法。基于这些威胁模型,我们对两种主要情况的实证研究提出:操纵传感器输入和直接对动作的扰动。研究结果表明,尽管基于RL的AD系统表现出针对传感器输入操纵的弹性,但在受到直接动作扰动时它们会表现出脆弱性。主要的和宽容的场景涉及更改传感器读数,例如在偏心转弯期间,这可能会误导系统并可能导致事故。这对于小误差很大的操作至关重要。第二种情况直接扰动动作,更多地是对基于RL的AD系统脆弱性的理论研究,而不是实用的现实世界威胁。
人工智能(AI)方法是现代世界不可或缺的一部分。如今,每个与智能手机互动的人都与AI接触(Herget,2024)(Wired Insider,2021)。 自从大型语言模型(LLMS)(CF(BSI,2024a)易于获得BSI的评论)以来,公众对AI存在的意识已广泛传播。 但是,自引入LLM之前,AI算法支持或自动执行决策过程。 Propublica的报告,即预测模型用于确定美国犯罪嫌疑人的累犯风险,受到了很大的关注(Angwin等,2016)。 在金融领域,基于AI的预测模型用于支持贷款申请的决定或预测金融市场的发展(Aziz等,2022)。 此外,使用基于AI的决策支持系统进行诊断和治疗患者的治疗,目前已在医学中进行了研究或部分实施(社论,2024年)(皇家放射学院,等,2023)(BSI,2024年)。 这些是高度敏感的领域,在这种领域中,错误的决定可能会对公民造成社会,法律,财务或健康损害。如今,每个与智能手机互动的人都与AI接触(Herget,2024)(Wired Insider,2021)。自从大型语言模型(LLMS)(CF(BSI,2024a)易于获得BSI的评论)以来,公众对AI存在的意识已广泛传播。但是,自引入LLM之前,AI算法支持或自动执行决策过程。Propublica的报告,即预测模型用于确定美国犯罪嫌疑人的累犯风险,受到了很大的关注(Angwin等,2016)。在金融领域,基于AI的预测模型用于支持贷款申请的决定或预测金融市场的发展(Aziz等,2022)。此外,使用基于AI的决策支持系统进行诊断和治疗患者的治疗,目前已在医学中进行了研究或部分实施(社论,2024年)(皇家放射学院,等,2023)(BSI,2024年)。这些是高度敏感的领域,在这种领域中,错误的决定可能会对公民造成社会,法律,财务或健康损害。
作者:E Kim · 2020 · 被引用 29 次 — 或者,防御可以通过预处理、量化或压缩来处理模型的输入 [47, 11, 17, 19, 28]。我们的工作是独特的,不...
摘要 — 单独增强单个深度学习模型的鲁棒性只能提供有限的安全保障,尤其是在面对对抗性示例时。在本文中,我们提出了 DeSVig,这是一个去中心化的 Swift Vigilance 框架,用于识别工业人工智能系统 (IAIS) 中的对抗性攻击,使 IAIS 能够在几秒钟内纠正错误。DeSVig 高度去中心化,提高了识别异常输入的有效性。我们尝试使用特殊指定的移动边缘计算和生成对抗网络 (GAN) 来克服由行业动态引起的超低延迟挑战。我们工作最重要的优势是它可以显着降低被对抗性示例欺骗的失败风险,这对于安全优先和延迟敏感的环境至关重要。在我们的实验中,工业电子元件的对抗样本由几种经典的攻击模型生成。实验结果表明,DeSVig 比一些最先进的防御方法更强大、更高效、更具可扩展性。
广泛应用于自主驾驶中的基于深度学习的单眼深度估计(MDE)很容易受到对抗性攻击的影响。先前针对MDE模型的物理攻击依赖于2D广泛的补丁,因此它们仅影响MDE地图中的一个小型局部区域,但在各种观点下都失败了。为了解决这些限制,我们提出了3D深度傻瓜(3d 2傻瓜),这是对MDE模型的第一个基于3D纹理的对抗性攻击。3d 2傻瓜被专门优化,以生成3D对抗纹理对型号的车辆类型,并在恶劣天气条件(例如雨水和雾)中具有改善的鲁棒性。实验结果验证了我们3d 2傻瓜在各种情况下的出色性能,包括车辆,MDE Mod-els,天气状况和观点。现实世界中使用打印3D纹理的实验实验进一步表明,我们的3d 2傻瓜可能会导致超过10米的MDE误差。该代码可在https://github.com/gandolfczjh/3d2fool上找到。
对抗训练(AT)是提高深度神经网络鲁棒性的最常用机制。最近,一种针对中间层的新型对抗攻击利用了对抗训练网络的额外脆弱性,输出错误的预测。这一结果说明对抗训练中对抗扰动的搜索空间不足。为了阐明中间层攻击有效的原因,我们将前向传播解释为聚类效应,表征神经网络对于与训练集具有相同标签的样本的中间层表示相似,并通过相应的信息瓶颈理论从理论上证明了聚类效应的存在。随后我们观察到中间层攻击违反了 AT 训练模型的聚类效应。受这些重要观察的启发,我们提出了一种正则化方法来扩展训练过程中的扰动搜索空间,称为充分对抗训练(SAT)。我们通过严格的数学证明给出了经过验证的神经网络鲁棒性界限。实验评估表明,SAT 在防御针对输出层和中间层的对抗性攻击方面优于其他最先进的 AT 机制。我们的代码和附录可以在 https://github.com/clustering-effect/SAT 找到。
这项工作是在Ferheen Ayaz在格拉斯哥大学任职时完成的。作者的联系信息:伊德里斯·扎卡里亚(Idris Zakariyya),格拉斯哥大学,格拉斯哥,英国,idris.zakariyya@glasgow.ac.ac.uk; Ferheen Ayaz,城市,伦敦大学,伦敦,英国,ferheen.ayaz@city.ac.uk; Mounia Kharbouche-Harrari,法国Stmicroelectronics,Mounia.kharbouche-harrari@st.com;杰里米·辛格(Jeremy Singer),格拉斯哥大学,英国格拉斯哥,jeremy.singer@glasgow.ac.uk; Sye Loong Keoh,格拉斯哥大学,英国格拉斯哥,syeloong.keoh@ glasgow.ac.uk; Danilo Pau,意大利Stmicroelectronics,danilo.pau@st.com;何塞·卡诺(JoséCano),格拉斯哥大学,英国格拉斯哥,josecano.reyes@glasgow.ac.uk。