多模式嵌入式编码文本,图像,热图像,声音和视频中的单个嵌入空间,对跨不同方式的对齐表示(例如,,将狗的图像与吠叫声相关联)。在本文中,我们表明多模式的嵌入可能容易受到我们称为“对抗幻觉的攻击”。给定图像或声音,对手可以扰动它,以使其嵌入接近另一种模式中的任意,对手选择的输入。这些攻击是跨模式和目标的:对手可以将任何图像或声音与他选择的任何目标保持一致。广泛的幻觉利用了嵌入空间中的邻近性,因此对下游任务和方式不可知,从而实现了当前和将来的任务的批发妥协,以及对敌方无法获得的方式。使用Imbind和AudioClip嵌入,我们演示了对抗性输入,在不了解特定下游任务,误解图像生成,文本生成,零拍,零拍摄和音频检索的情况下生成的对准输入是如何对准的。我们调查了跨不同嵌入式嵌入方式的幻觉的可转移性,并开发了我们方法的黑盒版本,我们用来证明对亚马逊商业专有泰坦嵌入的第一个对抗性对齐攻击。最后,我们分析了对策和逃避攻击。
摘要在收成期间缺乏遥感图像在估计农作物产量方面构成了重大挑战。这项研究通过使用条件生成对抗网络的基于病例的推理框架(CGANA-CBR)来克服这一挑战,以在收获期间生成农田的遥感图像。具体来说,该研究使用CGANA-CBR模型生成农田的遥感图像,然后使用这些生成的图像来补充缺乏收获周期数据的真实遥感图像,从而实现了数据增强。随后,训练了卷积神经网络(CNN)模型,以提高平均产量预测的准确性。结果表明,与仅在实际远程感应数据中训练的基线CNN模型相比,RMSE的CNN模型同时结合了实际数据和CGANA-CBR生成的数据,其平均降低为6.3%。研究还发现,训练持续时间和使用的数据量显着影响模型性能,这表明需要在该领域进行进一步研究。
描述对抗随机森林(ARFS)将数据递归分配到完全分解的叶子中,其中特征是共同独立的。该过程是迭代的,具有交替的发电和歧视。数据在每一轮中都变得越来越现实,直到无法可靠地区分原始和合成样品为止。这对于几个无监督的学习任务(例如密度估计和数据综合)很有用。两者的方法都在此软件包中实现。ARF自然处理混合连续和分类协变量的非结构化数据。他们继承了随机森林的许多好处,包括速度,灵活性和稳定的性能和默认参数。有关详细信息,请参见Watson等。(2023)。
生成对抗网络(GAN)是用于合成图像和其他数据的最新神经网络模型。gans对合成数据的质量有了可观的改进,迅速成为数据生成任务的标准。在这项工作中,我们总结了甘斯在心脏病学领域的应用,包括生成逼真的心脏图像,心电图信号和合成电子健康记录。关于研究,临床护理和学术界的gan生成数据的效用。此外,我们介绍了gan生成的心脏磁共振和超声心动图图像的说明性示例,显示了六个不同模型的图像质量的演变,这与真实图像几乎没有区别。最后,我们讨论了未来的应用,例如模态翻译或患者轨迹建模。此外,我们讨论了甘斯(Gans)需要克服的尚待挑战,即他们的培训动态,医疗保真度或数据法规和道德问题,以集成在心脏病工作流程中。
•系统上下文图:显示与系统相互作用的用户和外部实体。•容器图:这将系统表示为相互交互的一组独立服务。•组件图:将每个容器分解为详细信息到详细的组件,作为功能块执行特定任务的功能。•代码图:描述每个组件的实现,使用uml uml uml uml duagram andity duagram duagram andity duagram duagram andity duagram duagram andity duagurape andity die tie diagragram andity die diagumal diagumals andity diabes。
摘要 - 随着机器学习模型持续集成到关键基础架构中,这些系统针对对抗性攻击的弹性对于所有领域都很重要。本文针对使用Ci-CflowMeter Parser的网络数据集引入了针对网络数据集的对抗性攻击生成器框架。我们对包括FGSMA,JSMA,PGD,C&W等各种突出的对抗攻击进行了全面评估,以评估其在OCCP数据集中的效果。对对抗发电机进行了精心评估,证明了模型性能的重大影响以检测潜在的扰动。结果展示了不同类型的对抗攻击的影响,这有助于未来的防御策略的批判性进步,以保护工业控制系统。索引术语 - 对话攻击,白色框,黑框,eva-sion
1 本节概述的针对新出现的危害的威胁破坏计划是由 Meta 的一个多学科团队开发和启动的,其中包括领导这项工作的 Artemis Seaford 和 Alberto Fittarelli。
1 本节概述的针对新兴危害的威胁破坏计划是由 Meta 的一个多学科团队开发和启动的,其中包括领导这项工作的 Artemis Seaford 和 Alberto Fittarelli。